Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology

没有可用的翻译。

Dingfeng Cao a, b, Bin Shi a, Steven P Loheide II b, Xulong Gong c,d, Hong-Hu Zhu a, Guangqing Wei e, Lumei Yang c,d

a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

b Department of Civil and Environmental Engineering, University of Wisconsin-Madison

c Geological Survey of Jiangsu Province, Nanjing 210018, China

d Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, Nanjing 210018, China

e Suzhou NanZee Sensing Technology Co. Ltd, Suzhou 215123, China

Energy & Buildings, 2018.

doi: 10.1016/j.enbuild.2018.01.022

ABSTRACT

In-situ thermal response testing (TRT) has become the most effective way to determine ground thermal parameters before developing renewable geothermal energy systems. However, these parameters may not be static when some hydrologic conditions in porous formation change with time. In this paper, we propose a method for evaluating the ground heat exchange performance using the active distributed temperature sensing (A–DTS) technology, which infers soil moisture by a thermal response caused by active electrical current. We evaluated the feasibility of this method by several lab experiments and a field thermal response test (TRT). Using this method, the relationship between thermal conductivity and soil moisture content was established for silt, clay, organic soil and sand, respectively. To quantitatively evaluate the sensitivity of soil thermal conductivity to moisture content, a new parameter called relative thermal conductivity, is defined to describe the effect of water bridges among soil solid particles on thermal conductivity. The lab test results demonstrate that soil moisture content has significant influence on thermal conductivity when the soil is nearly dry (β > β(cri)), but its effect becomes less evident when the soil is moist (β ≤ β(cri)). It is found that the relationship between soil moisture content and thermal conductivity can be well fitted by the Johansen model. The results of the field-scale TRT demonstrated the ability of the proposed technique to detect the effects of rainfall on soil thermal conductivity near the ground surface. The field test results also suggest that the soil thermal conductivity measured by in-situ DTS is larger than that obtained from soil samples in lab. However, for rock, the thermal conductivity acquired by DTS is less than the values collected in lab.

Keywords: Distributed temperature sensing (DTS), Thermal response test (TRT), Unsaturated soil, Moisture content, Porous formation, Actively heated optical fiber

References

[1] R. Borinaga–Treviño, P. Pascual–Muñoz, D. Castro–Fresno, E. Blanco–Fernandez, Borehole thermal response and thermal resistance of four different grouting materials measured with a TRT, Applied Thermal Engineering 53 (2013) 13–20.

[2] M. Guo, N. Diao, Y. Man, Z. Fang, Research and development of the hybrid ground–coupled heat pump technology in China, Renewable Energy 87 (2016) 1033–1044.

[3] G. Soriano, T. Espinoza, R. Villanueva, I. Gonzalez, A. Montero, M. Cornejo, K. Lopez, Thermal geological model of the city of Guayaquil, Ecuador, Geothermics 66 (2017) 101–109.

[4] K. Mensah, Y.S. Jang, J.M. Choi, Assessment of design strategies in a ground source heat pump system, Energy and Buildings 138 (2017) 301–308.

[5] A. Miyara, Thermal performance and pressure drop of spiral–tube ground heat exchangers for ground–source heat pump, Applied Thermal Engineering 90 (2015) 630–637.

[6] P. Belzile, L. Lamarche, D.R. Rousse, Semi–analytical model for geothermal borefields with independent inlet conditions, Geothermics 60 (2016) 144–155.

[7] A. Franco, R. Moffat, M. Toledo, P. Herrera, Numerical sensitivity analysis of thermal response tests (TRT) in energy piles, Renewable Energy 86 (2016) 985–992.

[8] S.E. Dehkordi, R.A. Schincariol, S. Reitsma, Thermal performance of a tight borehole heat exchanger Renewable Energy 83 (2015) 698–704.

[9] W. Zheng, H. Zhang, S. You, T. Ye, The Thermal Characteristics of a Helical Coil Heat Exchanger for Seawater–source Heat Pump in Cold Winter, Procedia Engineering 146 (2016) 549–558.

[10] M. Kharseh, M. Al–Khawaja, M.T. Suleiman, Potential of ground source heat pump systems in cooling–dominated environments: residential buildings, Geothermics 57 (2015) 104–110.

[11] K.S. Chang, M.J. Kim, Thermal performance evaluation of vertical U–loop ground heat exchanger using in–situ thermal response test, Renewable Energy 87 (2016) 585–591.

[12] T. V. Bandos, Á. Campos–Celador, L.M. López–González, J.M. Sala–Lizarraga, Finite cylinder–source model for energy pile heat exchangers: Effect of buried depth and heat load cyclic variations, Applied Thermal Engineering 96 (2016) 130–136.

[13] T. Lhendup, L. Aye, R.J. Fuller, In–situ measurement of borehole thermal properties in Melbourne, Applied Thermal Engineering 73 (2014) 285–293.

[14] N.H. Abu–Hamdeh, A.I. Khdair, R.C. Reeder, A comparison of two methods used to evaluate thermal conductivity for some soils, International Journal of Heat and Mass Transfer 44 (2001) 1073–1078.

[15] D. Barry–Macaulay, A. Bouazza, R.M. Singh, B. Wang, P.G. Ranjith, Thermal conductivity of soils and rocks from the Melbourne (Australia) region, Engineering Geology 164 (2013) 131–138.

[16] C.S. Blázquez, A.F. Martín, I.M. Nieto, P.C. García, L.S.S. Pérez, D.G. Aguilera, Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples, Geothermics 65 (2017) 60–71.

[17] O. Nusier, N. Abu–Hamdeh, Laboratory techniques to evaluate thermal conductivity for some soils, Heat and mass transfer 39 (2003) 119–123.

[18] N.H. Abu–Hamdeh, R.C. Reeder, Soil thermal conductivity effects of density, moisture, salt concentration, and organic, Soil science society of America Journal 64 (2000) 1285–1290.

[19] A. Austin, Development of an in situ system for measuring ground thermal properties (Master thesis), Oklahoma State University, 1998.

[20] J.D. Spitler, S.E. Gehlin, Thermal response testing for ground source heat pump systems—An historical review, Renewable and Sustainable Energy Reviews 50 (2015) 1125–1137.

[21] C. Zhang, Z. Guo, Y. Liu, X. Cong, D. Peng, A review on thermal response test of ground-coupled heat pump systems, Renewable & Sustainable Energy Reviews 4 (2014) 851–867.

[22] J.D. Spitler, & S.E.A. Gehlin, Thermal response testing for ground source heat pump systems—an historical review, Renewable & Sustainable Energy Reviews 50 (2015) 1125–1137.

[23] E. Atam, & L. Helsen, Ground-coupled heat pumps: part 1 – literature review and research challenges in modeling and optimal control, Renewable & Sustainable Energy Reviews 54 (2016) 1653–1667.

[24] H. Fujii, H. Okubo, K. Nakao, R. Itoi, Interpretation of temperature performances at co-axial ground heat exchangers in heterogeneous formations, Journal of the Geothermal Research Society of Japan 27 (2009) 223–232.

[25] H. Fujii, H. Okubo, K. Nishi, R. Itoi, K. Ohyama, K. Shibata, An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers, Geothermics 38 (2009) 399–406.

[26] J. Kallio, N. Leppäharju, I. Martinkauppi, M. Nousiainen, Geoenergy research and its utilization in finland, Geological Survey of Finland Espoo 49 (2011) 179–185.

[27] G. Radioti, S. Delvoie, R. Charlier, G. Dumont, F. Nguyen, Heterogeneous bedrock investigation for a closed-loop geothermal system: a case study, Geothermics 62(2016) 79-92.

[28] V. Soldo, L. Boban, S. Borović, Vertical distribution of shallow ground thermal properties in different geological settings in Croatia, Renewable Energy 99 (2016) 1202-1212.

[29] J. Luo, J. Rohn, W. Xiang, M. Bayer, A. Priess, L. Wilkmann, H. Steger, R. Zorn, Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers, Energy 84 (2015) 473–484.

[30] J. Luo, J. Rohn, W. Xiang, D. Bertermann, P. Blum, A review of ground investigations for ground source heat pump (GSHP) systems, Energy and Buildings 117 (2016) 160–175.

[31] B.O. Shim, Y. Song, H. Fujii, H. Okubo, Interpretation of thermal response tests using the fiber optic distributed temperature sensing method. In: The 11th international conference on energy storage EFFSTOCK, Stockholm, Sweden, 2009.

[32] J. Acuña, & B. Palm, Distributed thermal response tests on pipe-in-pipe borehole heat exchangers, Applied Energy, 109 (2013) 312-320.

[33] M. Li, A.C. Lai, Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales, Applied Energy 151 (2015) 178–191.

[34] A.M. Striegl, S.P. Loheide II. Heated distributed temperature sensing for field scale soil moisture monitoring. Ground Water 50 (2012) 340–347.

[35] J.J. Sourbeer S.P. Loheide II. Obstacles to long–term soil moisture monitoring with heated distributed temperature sensing, Hydrological Processes 30 (2015) 1017–1035.

[36] C. Sayde, J.B. Buelga, L. Rodriguez–Sinobas, L.E. Khoury, M. English, N. van de Giesen, J.S. Selker, Mapping variability of soil water content and flux across 1–1000 m scales using the actively heated fiber optic method. Water Resources Research 50 (2014) 7302–7317.

[37] D.F. Cao, B. Shi, H.H. Zhu, G.Q. Wei, S.E. Chen, J.F. Yan, A distributed measurement method for in–situ soil moisture content by using carbon–fiber heated cable, Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 700–707.

[38] C. Sayde, C. Gregory, M. Gil‐Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, J.S. Selker, Feasibility of soil moisture monitoring with heated fiber optics, Water Resources Research 46 (2010) 2840-2849

[39] S. Hwang, R. Ooka, Y. Nam, Evaluation of estimation method of ground properties for the ground source heat pump system, Renewable energy 35 (2010) 2123–2130.

[40] K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview, Sensors and Actuators A Physical 82 (2000) 40–61.

[41] S.W. Tyler, J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen, C.E. Thodal, S.G. Schladow, Environmental temperature sensing using Raman spectra DTS fiber‐optic methods, Water Resources Research 45 (2009) 1010–1029.

[42] M.Z. Yu, X.F. Peng, X.D. Li, Z.H. Fang, A simplified model for measuring thermal properties of deep ground soil, Experimental Heat Transfer 17 (2004) 119–130.

[43] O. Johansen, Thermal conductivity of soils (Ph. D. thesis), Norwegian University, 1977.

[44] C.D. Peters–Lidard, E. Blackburn, X. Liang, E.F. Wood, The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures, Journal of the Atmospheric Sciences 55 (1998) 1209–1224.

[45] J. Côté, J.M. Konrad, A generalized thermal conductivity model for soils and construction materials, Canadian Geotechnical Journal 42 (2005) 443–458.

[46] S.O. Chung, R. Horton, Soil heat and water flow with a partial surface mulch, Water Resources Research 23 (1987) 2175–2186.

[47] S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Science Society of America Journal 71 (2007) 8–14.

[48] M.V.B.B. Gangadhara Rao, D.N. Singh, A generalized relationship to estimate thermal resistivity of soils, Canadian Geotechnical Journal 36 (1999) 767–773.

[49] S.C. Steele‐Dunne, M.M. Rutten, D.M. Krzeminska, M. Hausner, S.W. Tyler, J. Selker, T.A. Bogaard, N.C. Van de Giesen, Feasibility of soil moisture estimation using passive distributed temperature sensing, Water Resources Research 46 (2010) 91-103.

[50] S. Lu, T.S. Ren, Y.S. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Science Society of America Journal 71 (2007) 8-14.

[51] V.R. Tarnawski, & B. Wagner, A new computerized approach to estimating the thermal properties of unfrozen soils, Canadian Geotechnical Journal 29 (2011) 714-720.

[52] M. Reuss, M. Beck, J.P. Müller, Design of a seasonal thermal energy storage in the ground, Solar energy 59 (1997) 247–257.

[53] W. Zhang, H. Yang, N. Diao, L. Lu, Z. Fang, Exploration on the reverse calculation method of groundwater velocity by means of the moving line heat source, International Journal of Thermal Sciences 99 (2016) 52–63.

[54] S.E. Dehkordi, O. Bo, R.A. Schincariol, Effect of groundwater flow in vertical and horizontal fractures on borehole heat exchanger temperatures, Bulletin of Engineering Geology & the Environment 74 (2015) 479–491.

[55] V. Wagner, P. Blum, M. Kübert, P. Bayer, Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers, Geothermics 46 (2013) 22–31.

[56] N. Diao, Q. Li, Z. Fang, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Sciences 43 (2004) 1203–1211.

[57] W. Choi, & R. Ooka, Effect of natural convection on thermal response test conducted in saturated porous formation: comparison of gravel-backfilled and cement-grouted borehole heat exchangers, Renewable Energy 96 (2016) 891–903.

[58] G.H. Go, S.R. Lee, N.V. Nikhil, S. Yoon, A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration, Energy 83(2015) 766–777.

[59] M.P. Anderson, Heat as a ground water tracer, Ground water 43 (2005) 951–968.

[60] H. Su, S. Tian, Y. Kang, W. Xie, J. Chen, Monitoring water seepage velocity in dikes using distributed optical fiber temperature sensors, Automation in Construction 76 (2017) 71–84.

[61] Z. Wang, F. Wang, Z. Ma, X. Wang, X. Wu, Research of heat and moisture transfer influence on the characteristics of the ground heat pump exchangers in unsaturated soil, Energy and Buildings 130 (2016) 140–149.

[62] H. Wang, C. Qi, H. Du, J. Gu, Thermal performance of borehole heat exchanger under groundwater flow: a case study from Baoding, Energy and Buildings 41 (2009) 1368–1373.

[63] L. Lamarche, B. Beauchamp, A new contribution to the finite line–source model for geothermal boreholes, Energy and Buildings 39 (2007) 188–198.

[64] A.B. Platts, D.A. Cameron, J. Ward, Improving the performance of Ground Coupled Heat Exchangers in unsaturated soils, Energy and Buildings 104 (2015) 323–335.

[65] R. Fan, Y. Gao, L. Hua, X. Deng, J. Shi, Thermal performance and operation strategy optimization for a practical hybrid ground–source heat–pump system, Energy and Buildings 78 (2014) 238–247.

[66] W. Choi, and R. Ooka, Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis, Renewable Energy 85 (2016 a) 306–318.

[67] W. Choi, and R. Ooka, Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment, Renewable Energy 85 (2016 b) 1090–1105.