A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements

没有可用的翻译。

Cheng-Cheng Zhang a, Hong-Hu Zhu a,b, Su-Ping Liu a, Bin Shi a, Dan Zhang a

a School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China

b Nanjing University High-Tech Institute at Suzhou, Suzhou, Jiangsu 215123, China

Engineering Geology 234 (2018) 83–96

ABSTRACT: Deformation monitoring of landslides is of great significance to characterize and understand their evolutions. Recently the distributed fiber optic strain sensing (DFOSS) technique has emerged as a powerful tool for landslide monitoring by enabling distributed and real-time measurement along a sensing optical fiber (SOF) over dozens of kilometers with high strain accuracy. However, the correlation between landslide displacements and axial strains exerted on an SOF remains elusive. Here we present a preliminary attempt to calculate shear displacements of landslides based on distributed strain measurements via a kinematic method. Parametric studies on the sliding direction, width of shear zone and magnitude of shear displacement indicate that, under certain circumstances, the shear displacements of a landslide can be well estimated without going much deep into the pattern of shear zone or the slope mass–SOF coupling condition. The proposed calculation method is validated through field shear tests of geologic granular materials, and has immediate application to the analysis of the Majiagou landslide, Three Gorges Reservoir region, China. The distributed strain measurements captured by a borehole-embedded SOF allow two sliding surfaces of this landslide to be located; one occurred at the contact between surface deposits and bedrock, whereas the other was the main sliding surface occurring within bedrock. The shear displacements along the main sliding surface are calculated using the proposed method. It is revealed that the landslide responds more aggressively to the fluctuation of reservoir water level than to the rainfall over a 1-year period.

Keywords: Landslide displacement, Strain measurement, Distributed fiber optic strain sensing (DFOSS), Shear zone, Coupling effect

References

Arslan, A., Kelam, M.A., Eker, A.M., Akgün, H., Koçkar, M.K., 2015. Optical fiber technology to monitor slope movement. In: Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N. (Eds.), Engineering Geology for Society and Territory–Volume 2: Landslide Processes. Springer International Publishing, Cham, pp. 1425–1429. http://dx.doi.org/10.1007/978-3-319-09057-3_252.

Arslan, A., Koçkar, M.K., Akgün, H., 2016. Utilization of optical fiber system for mass movement monitoring. Disaster Sci. Eng. 2, 19–24.

Baldi, P., Cenni, N., Fabris, M., Zanutta, A., 2008. Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 102, 435–444. http://dx.doi.org/10.1016/j.geomorph.2008.04.027.

Booth, A.M., Lamb, M.P., Avouac, J.-P., Delacourt, C., 2013. Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France. Geophys. Res. Lett. 40, 4299–4304. http://dx.doi.org/10.1002/grl.50828.

Corominas, J., Moya, J., Lloret, A., Gili, J.A., Angeli, M.G., Pasuto, A., Silvano, S., 2000. Measurement of landslide displacements using a wire extensometer. Eng. Geol. 55, 149–166. http://dx.doi.org/10.1016/S0013-7952(99)00086-1.

Damiano, E., Avolio, B., Minardo, A., Olivares, L., Picarelli, L., Zeni, L., 2017. A laboratory study on the use of optical fibers for early detection of pre-failure slope movements in shallow granular soil deposits. Geotech. Test. J. 40, 529–541. http://dx.doi.org/10.1520/GTJ20160107.

Delbridge, B.G., Bürgmann, R., Fielding, E., Hensley, S., Schulz, W.H., 2016. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: application to the Slumgullion landslide. J. Geophys. Res. Solid Earth 121, 3951–3977.http://dx.doi.org/10.1002/2015JB012559.

Gili, J.A., Corominas, J., Rius, J., 2000. Using global positioning system techniques in landslide monitoring. Eng. Geol. 55, 167–192. http://dx.doi.org/10.1016/S0013-7952(99)00127-1.

Hauswirth, D., Iten, M., Puzrin, A.M., 2012. Detection of ground movements using soil embedded distributed fiber optic sensors. In: Coutinho, R.Q., Mayne, P.W. (Eds.), Geotechnical and Geophysical Site Characterization 4. CRC Press, London, UK, pp. 579–586. http://dx.doi.org/10.1201/b13251-68.

Henninges, J., Huenges, E., Burkhardt, H., 2005. In situ thermal conductivity of gas-hydrate-bearing sediments of the Mallik 5L-38 well. J. Geophys. Res. Solid Earth 110, B11206. http://dx.doi.org/10.1029/2005JB003734.

Higuchi, K., Fujisawa, K., Asai, K., Pasuto, A., Marcato, G., 2005. Development of landslide displacement detection sensor using optical fiber in the OTDR method. In: Proceedings of the 44th Colloquium of Japan Landslide Society. Sasebo, Japan, pp. 315–318.

Higuchi, K., Fujisawa, K., Asai, K., Pasuto, A., Marcato, G., 2007. New landslide monitoring technique using optical fiber sensor in Japan. In: Proceedings of the 2nd International Workshop on Optoelectronic Sensor-Based Monitoring in Geo-Engineering. Nanjing, China, pp. 73–76.

Hoepffner, R., 2008. Distributed Fiber Optic Strain Sensing in Hydraulic Concrete and Earth Structures: Measuring Theory and Field Investigations on Dams and Landslides. Technische Universität München, Germany.

Huntley, D., Bobrowsky, P., Qing, Z., Sladen, W., Bunce, C., Edwards, T., Hendry, M., Martin, D., Choi, E., 2014. Fiber optic strain monitoring and evaluation of a slow moving landslide near Ashcroft, British Columbia, Canada. In: Sassa, K., Canuti, P., Yin, Y. (Eds.), Landslide Science for a Safer Geoenvironment. The International Programme on Landslides (IPL) Vol. 1. Springer International Publishing, Cham, pp. 415–421. http://dx.doi.org/10.1007/978-3-319-04999-1_58.

Iten, M., Puzrin, A.M., Schmid, A., 2008. Landslide monitoring using a road-embedded optical fiber sensor. In: Ecke, W., Peters, K.J., Meyendorf, N.G. (Eds.), Proc. SPIE 6933, Smart Sensor Phenomena, Technology, Networks, and Systems. SPIE, San Diego, California, USA, pp. 693315–693319. http://dx.doi.org/10.1117/12.774515.

Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., Brien, D.L., 2000. Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516. http://dx.doi.org/10.1126/science.290.5491.513.

Jiao, Y.-Y., Zhang, H.-Q., Tang, H.-M., Zhang, X.-L., Adoko, A.C., Tian, H.-N., 2014. Simulating the process of reservoir-impoundment-induced landslide using the extended DDA method. Eng. Geol. 182 (Part A), 37–48. http://dx.doi.org/10.1016/j.enggeo.2014.08.016.

Kato, S., Kohashi, H., 2006. Study on the monitoring system of slope failure using optical fiber sensors. In: Proceedings of GeoCongress 2006. American Society of Civil Engineers, Atlanta, Georgia, United States. http://dx.doi.org/10.1061/40803(187)34.

Kilburn, C.R.J., Petley, D.N., 2003. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54, 21–32. http://dx.doi.org/10.1016/S0169-555X(03)00052-7.

Li, B., Zhang, D., Wang, J., Liu, S., Shi, B., 2015. Calculation method for soil shear deformation based on strain distribution of sensing fiber. J. Eng. Geol. 23, 767–772 (in Chinese with English abstract).

Lienhart, W., 2015. Case studies of high-sensitivity monitoring of natural and engineered slopes. J. Rock Mech. Geotech. Eng. 7, 379–384. http://dx.doi.org/10.1016/j.jrmge.2015.04.002.

Loranger, S., Gagné, M., Lambin-Iezzi, V., Kashyap, R., 2015. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Sci. Rep. 5, 11177. http://dx.doi.org/10.1038/srep11177.

Ma, J., Tang, H., Hu, X., Bobet, A., Zhang, M., Zhu, T., Song, Y., Ez Eldin, M.A.M., 2017. Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides 14, 311–322. http://dx.doi.org/10.1007/s10346-016-0693-7.

Michlmayr, G., Cohen, D., Or, D., 2012. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media - a review. Earth Sci. Rev. 112, 97–114. http://dx.doi.org/10.1016/j.earscirev.2012.02.009.

Michlmayr, G., Chalari, A., Clarke, A., Or, D., 2017. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides 14, 1139–1146. http://dx.doi.org/10.1007/s10346-016-0776-5.

Moffat, R., Beltrán, J.F., Alvarez, A., 2013. Analysis of a simple displacement sensor based on BOTDR optical fiber. In: Proceedings of Geo-Congress 2013. American Society of Civil Engineers, San Diego, California, United States. http://dx.doi.org/10.1061/9780784412787.151.

Moore, J.R., Gischig, V., Button, E., Loew, S., 2010. Rockslide deformation monitoring with fiber optic strain sensors. Nat. Hazards Earth Syst. Sci. 10, 191–201. http://dx.doi.org/10.5194/nhess-10-191-2010.

Naruse, H., Uchiyama, Y., Kurashima, T., Unno, S., 2000. River levee change detection using distributed fiber optic strain sensor. IEICE Trans. Electron. E83–C, 462–467.

Olivares, L., Damiano, E., Greco, R., Zeni, L., Picarelli, L., Minardo, A., Guida, A., Bernini, R., 2009. An instrumented flume to investigate the mechanics of rainfall-induced landslides in unsaturated granular soils. Geotech. Test. J. 32, 788–796. http://dx.doi.org/10.1520/GTJ101366.

Picarelli, L., Damiano, E., Greco, R., Minardo, A., Olivares, L., Zeni, L., 2015. Performance of slope behavior indicators in unsaturated pyroclastic soils. J. Mt. Sci. 12, 1434–1447. http://dx.doi.org/10.1007/s11629-014-3104-3.

Schenato, L., Palmieri, L., Camporese, M., Bersan, S., Cola, S., Pasuto, A., Galtarossa, A., Salandin, P., Simonini, P., 2017. Distributed optical fibre sensing for early detection of shallow landslides triggering. Sci. Rep. 7, 14686. http://dx.doi.org/10.1038/s41598-017-12610-1.

Shi, B., Ding, Y., Xu, H., Zhang, D., 2004. An application of distributed optic fiber strain measurement to early-warning of landslide. J. Eng. Geol. 12, 515–518 (in Chinese with English abstract).

Shi, B., Sui, H., Liu, J., Zhang, D., 2006. The BOTDR-based distributed monitoring system for slope engineering. In: Proceedings of 10th IAEG International Congress. Geological Society of London, Nottingham, UK, pp. 683.

Shi, B., Sui, H., Zhang, D., Wang, B., Wei, G., Piao, C., 2008. Distributive monitoring of the slope engineering. In: Chen, Z., Zhang, J., Li, Z., Wu, F., Ho, K. (Eds.), Landslides and Engineered Slopes: From the Past to the Future. CRC Press, London, UK, pp. 1283–1288. http://dx.doi.org/10.1201/9780203885284-c171.

Stark, T.D., Choi, H., 2008. Slope inclinometers for landslides. Landslides 5, 339. http://dx.doi.org/10.1007/s10346-008-0126-3.

Sugimoto, H., 2001. Landslide Monitoring by Optical Fiber Sensor. Public Works Research Institute, Japan.

Sugimoto, H., Yanagihara, K., Asano, H., Tsunaki, R., 2001. Experiments for landslide monitoring using optical fiber technique. J. Japan Landslide Soc. 38, 24–29. http://dx.doi.org/10.3313/jls1964.38.24. (in Japanese).

Sun, Y., 2015. Bank Slope Multi-Fields Monitoring Based on Fiber Optic Sensing Technologies and Stability Evaluation Study. Nanjing University, China (in Chinese with English abstract).

Sun, Y., Zhang, D., Shi, B., Tong, H., Wei, G., Wang, X., 2014. Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng. Geol. 182, 49–62. http://dx.doi.org/10.1016/j.enggeo.2014.08.025.

Thévenaz, L., 2010. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives. Front. Optoelectron. China 3, 13–21. http://dx.doi.org/10.1007/s12200-009-0086-9.

Wang, B., Li, K., Shi, B., Wei, G., 2009. Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 6, 61–68. http://dx.doi.org/10.1007/s10346-008-0139-y.

Xia, M., Ren, G.M., Ma, X.L., 2013. Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall, Three Gorges, China. Nat. Hazards 68, 467–482. http://dx.doi.org/10.1007/s11069-013-0634-x.

Xu, D., Yin, J., 2016. Analysis of excavation induced stress distributions of GFRP anchors in a soil slope using distributed fiber optic sensors. Eng. Geol. 213, 55–63. http://dx.doi.org/10.1016/j.enggeo.2016.08.011.

Yenes, M., Monterrubio, S., Nespereira, J., Santos, G., 2009. Geometry and kinematics of a landslide surface in tertiary clays from the Duero Basin (Spain). Eng. Geol. 104, 41–54. http://dx.doi.org/10.1016/j.enggeo.2008.08.008.

Yin, Y., 2011. Recent catastrophic landslides and mitigation in China. J. Rock Mech. Geotech. Eng. 3, 10–18. http://dx.doi.org/10.3724/SP.J.1235.2011.00010.

Yin, Y., Wang, H., Gao, Y., Li, X., 2010. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7, 339–349. http://dx.doi.org/10.1007/s10346-010-0220-1.

Zalesky, J., Zalesky, M., Sasek, L., Capova, K., 2015. Fiber optics applied for slope movements monitoring. In: Winter, M.G., Smith, D.M., Eldred, P.J.L., Toll, D.G. (Eds.), Geotechnical Engineering for Infrastructure and Development. ICE Publishing, London, UK, pp. 1699–1704. http://dx.doi.org/10.1680/ecsmge.60678.

Zhang, C.-C., Zhu, H.-H., Shi, B., She, J.-K., 2014. Interfacial characterization of soil embedded optical fiber for ground deformation measurement. Smart Mater. Struct. 23, 95022. http://dx.doi.org/10.1088/0964-1726/23/9/095022.

Zhang, C.-C., Zhu, H.-H., Shi, B., 2016. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement. Sci. Rep. 6, 36469. http://dx.doi.org/10.1038/srep36469.

Zhu, H.-H., Shi, B., Zhang, J., Yan, J.-F., Zhang, C.-C., 2014a. Distributed fiber optic monitoring and stability analysis of a model slope under surcharge loading. J. Mt. Sci. 11, 979–989. http://dx.doi.org/10.1007/s11629-013-2816-0.

Zhu, Z.-W., Yuan, Q.-Y., Liu, D.-Y., Liu, B., Liu, J.-C., Luo, H., 2014b. New improvement of the combined optical fiber transducer for landslide monitoring. Nat. Hazards Earth Syst. Sci. 14, 2079–2088. http://dx.doi.org/10.5194/nhess-14-2079-2014.

Zhu, H.-H., Wang, Z.-Y., Shi, B., Wong, J.K.-W., 2016. Feasibility study of strain based stability evaluation of locally loaded slopes: insights from physical and numerical modeling. Eng. Geol. 208, 39–50. http://dx.doi.org/10.1016/j.enggeo.2016.04.019.