FBG-based monitoring of geohazards: current status and trends

没有可用的翻译。

Hong-Hu Zhu 1,2, Bin Shi 1, and Cheng-Cheng Zhang 1

1 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;

2 Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China

Sensors, 17(3), 452.

doi:10.3390/s17030452

Abstract: In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

Keywords: fiber optic sensor; fiber Bragg grating (FBG); geological process; geohazard; field monitoring; geotechnical instrumentation

References

1. Dunnicliff, J. Geotechnical Instrumentation for Monitoring Field Performance; John Wiley & Sons Inc.: New York, NY, USA, 1993.

2. Kashiwai, Y.; Daimaru, S.; Sanadab, H.; Matsuic, H. Development of borehole multiple deformation sensor system. Proc. SPIE 2008, 7004, 70041P.

3. Osborne, N.H.; Ng, C.C.; Chen, D.C.; Tan, G.H.; Rudi, J.; Latt, K.M. Maximising the potential of strain gauges: A Singapore perspective. In Geotechnical Aspects of Underground Construction in Soft Ground; Ng, C.W.W., Huang, H.W., Liu, G.B., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 579–585.

4. Legge, T.F.H.; Swart, P.L.; van Zyl, G.; Chtcherbakov, A.A. A fibre Bragg grating stress cell for geotechnical engineering applications. Meas. Sci. Technol. 2006, 17, 1173.

5. Glisic, B.; Inaudi, D. Fibre Optic Methods For Structural Health Monitoring; John Wiley & Sons Inc.: New York, NY, USA, 2007.

6. Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748.

7. Kato, S.; Kohashi, H. Study on the monitoring system of slope failure using optical fiber sensors. In Proceedings of the GeoCongress 2006, Atlanta, GA, USA, 26 February–1 March 2006.

8. Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649.

9. Morey,W.W.; Meltz, G.; Glenn, W.H. Fiber optic bragg grating sensors. Proc. SPIE 1989, 1169, 98–107.

10. Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; Artech House: London, UK, 1999.

11. Hill, K.O.; Malo, B.; Bilodeau, F.; Johnson, D.C.; Albert, J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993, 62, 1035–1037.

12. Zhu, H.H.; Yin, J.H. Fiber Optic Sensing and Performance Evaluation of Geo-Structures; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2012.

13. Kung, P.; Wang, L.; Comanici, M.I. A novel landslide warning solution using single mode telecom fiber embedded in geo-textile. Proc. SPIE 2012, 8345, 83450R.

14. Sun, Y.J.; Zhang, D.; Shi, B.; Tong, H.J.; Wei, G.Q.; Wang, X. Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng. Geol. 2014, 182, 49–62.

15. Zhu, H.H.; Ho, A.N.L.; Yin, J.H.; Sun, H.W.; Pei, H.F.; Hong, C.Y. An optical fibre monitoring system for evaluating the performance of a soil nailed slope. Smart Struct. Syst. 2012, 9, 393–410.

16. Ho, Y.T.; Huang, A.B.; Lee, J.T. Development of a fibre Bragg grating sensored ground movement monitoring system. Meas. Sci. Technol. 2006, 17, 1733–1740.

17. Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Zhang, C.C.; Wang, B.J. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage. Smart Mater. Struct. 2014, 23, 095027.

18. Lin, Y.B.; Chang, K.C.; Chern, J.C.; Wang, L.A. Packaging methods of fiber-Bragg grating sensors in civil structure applications. IEEE Sens. J. 2005, 5, 419–424.

19. Ansari, F.; Yuan, L. Mechanics of bond and interface shear transfer in optical fiber sensors. J. Eng. Mech. ASCE 1998, 124, 385–394.

20. Zhou, Z.; Graver, T.W.; Hsu, L.; Ou, J. Techniques of advanced FBG sensors: Fabrication, demodulation, encapsulation, and their application in the structural health monitoring of bridges. Pac. Sci. Rev. 2003, 5, 116–121.

21. Habel, W.R.; Hofmann, D.; Döring, H.; Jentsch, H.; Senze, A.; Kowalle, G. Detection of a Slipping Soil Area in An Open Coal Pit By Embedded Fibre-Optic Sensing Rods. In Proceedings of the 5th International Forum on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering, Nanjing, China, 12–14 October 2014.

22. Schmidt-Hattenberger, C.; Naumann, M.; Borm, G. Fiber Bragg grating strain measurements in comparison with additional techniques for rock mechanical testing. IEEE Sens. J. 2003, 3, 49–62.

23. Yang, Y.W.; Bhalla, S.; Wang, C.; Soh, C.K.; Zhao, J. Monitoring of rocks using smart sensors. Tunn. Undergr. Space Technol. 2007, 22, 206–221.

24. Habel, W.R.; Krebber, K. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sens. 2011, 1, 268–280.

25. Zhu, H.H.; Yin, J.H.; Yeung, A.T.; Jin, W. Field pullout testing and performance evaluation of GFRP soil nails. J. Geotech. Geoenviron. Eng. 2011, 137, 633–642.

26. Borana, L.; Yin, J.H.; Singh, D.N.; Shukla, S.K.; Pei, H.F. Influences of initial water content and roughness on skin friction of piles using FBG technique. Int. J. Geomech. ASCE 2016.

27. Surre, F.; Scott, R.H.; Banerji, P.; Basheer, P.; Sun, T.; Grattan, K.T. Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications. Sens. Actuators A Phys. 2012, 185, 8–16.

28. Gage, J.R.; Fratta, D.; Turner, A.L.; MacLaughlin, M.M.; Wang, H.F. Validation and implementation of a new method for monitoring in situ strain and temperature in rock masses using fiber-optically instrumented rock strain and temperature strips. Int. J. Rock Mech. Min. Sci. 2013, 61, 244–255.

29. Gage, J.R.; Wang, H.F.; Fratta, D.; Turner, A.L. In situ measurements of rock mass deformability using fiber Bragg grating strain gauges. Int. J. Rock Mech. Min. Sci. 2014, 71, 350–361.

30. Lu, Y.; Shi, B.; Wei, G.Q. BOTDR and FBG fixed-point distributed optical fiber sensor monitoring technology for ground fissures. Chin. J. Geol. Hazard Control 2016, 27, 103–109. (In Chinese)

31. Frank, A.; Nellen, P.M.; Brönnimann, R.; Sennhauser, U. Fiber optical Bragg grating sensors embedded in GFRP rockbolts. Proc. SPIE 1999, 3670, 497–504.

32. Kalamkarov, A.L.; Georgiades, A.V.; MacDonald, D.O.; Fitzgerald, S.B. Pultruded fiber reinforced polymer reinforcements with embedded fiber optic sensors. Can. J. Civ. Eng. 2000, 27, 972–984.

33. Chai, J.; Liu, J.X.; Qiu, B.; Li, Y.; Zhu, L.;Wei, S.M.;Wang, Z.P.; Zhang, G.W.; Yang, J.H. Detecting deformations in uncompacted strata by fiber Bragg grating sensors incorporated into GFRP. Tunn. Undergr. Space Technol. 2011, 26, 92–99.

34. Zalesky, J.; Zalesky, M.; Sasek, L.; Capova, K. Fiber optics applied for slope movements monitoring. In Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering; Winter, M.G., Smith, D.M., Eldred, P.J.L., Toll, D.G., Eds.; ICE Publishing: London, UK, 2015; pp. 1699–1704.

35. Nellen, P.M.; Frank, A.; Broennimann, R.; Sennhauser, U.J. Optical fiber Bragg gratings for tunnel surveillance. Proc. SPIE 2000, 3986, 263–270.

36. Briancon, L.; Nancey, A.; Villard, P. Development of Geodetect: A new warning system for the survey of reinforced earth constructions. Studia Geotechnica Mechanica 2005, 27, 23–32.

37. Nöther, N.;Wosniok, A.; Krebber, K.; Thiele, E. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis. In Proceedings of the SPIE—Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 9–13 March 2008.

38. Wang, Z.F.;Wang, J.; Sui, Q.M.; Jia, L.; Li, S.C.; Liang, X.M. Deformation reconstruction of a smart Geogrid embedded with fiber Bragg grating sensors. Meas. Sci. Technol. 2015, 26, 125202.

39. Wang, Z.F.; Wang, J.; Sui, Q.M.; Liang, X.M.; Jia, L.; Li, S.C.; Lu, S.D. Development and application of smart geogrid embedded with fiber Bragg grating sensors. J. Sens. 2015, 2015, 108209.

40. Iten, M.; Puzrin, A.M.; Schmid, A. Landslide monitoring using a road-embedded optical fiber sensor. Proc. SPIE 2008, 6933, 693315.

41. Huntley, D.; Bobrowsky, P.; Zhang, Q.; Sladen,W.; Bunce, C.; Edwards, T.; Hendry, M.; Martin, D.; Choi, E. Fiber optic strain monitoring and evaluation of a slow-moving landslide near Ashcroft, British Columbia, Canada. In Landslide Science for a Safer Geoenvironment; Sassa, K., Canuti, P., Yin, Y.P., Eds.; Springer: Cham, Switzerland, 2014; pp. 415–421.

42. Huntley, D.; Bobrowsky, P.; Zhang, Q.; Zhang, X.F.; Lv, Z.H.; Hendry, M.; Macciotta, R.; Schafer, M.; Meil, G.L.; Journault, J.; et al. An Application of optical fibre sensing real-time monitoring technologies at the Ripley Landslide, near Ashcroft, BC, Canada. In Proceedings of the GeoVancouver 2016, Vancouver, BC, Canada, 2–5 October 2016.

43. Dewynter, V.; Rougeault, S.; Boussoir, J.; Roussel, N.; Ferdinand, P.; Wileveau, Y. Instrumentation of borehole with fiber Bragg grating thermal probes: Study of the geothermic behaviour of rocks. Proc. SPIE 2005, 5855, 1016–1019.

44. Brambilla, G.; Kee, H.H.; Pruneri, V.; Newson, T.P. Optical fibre sensors for earth sciences: From basic concepts to optimising glass composition for high temperature applications. Opt. Lasers Eng. 2002, 37, 215–223.

45. Leung, C.K.;Wan, K.T.; Inaudi, D.; Bao, X.; Habel,W.; Zhou, Z.; Ou, J.; Ghandehari, M.;Wu, H.C.; Imai, M. Review: Optical fiber sensors for civil engineering applications. Mater. Struct. 2013, 48, 871–906.

46. Schmidt-Hattenberger, C.; Borm, G. Bragg grating extensometer rods (BGX) for geotechnical strain measurements. Proc. SPIE 1998, 3483, 214–217.

47. Yoshida, Y.; Kashiwai, Y.; Murakami, E.; Ishida, S.; Hashiguchi, N. Development of the monitoring system for slope deformations. Proc. SPIE 2002, 4694, 296–302.

48. Moore, J.R.; Gischig, V.; Button, E.; Loew, S. Rockslide deformation monitoring with fiber optic strain sensors. Nat. Hazard Earth Sys. 2010, 10, 191–201.

49. Pei, H.F.; Cui, P.; Yin, J.H.; Zhu, H.H.; Chen, X.Q.; Pei, L.Z.; Xu, D.S. Monitoring and warning of landslides and debris flows using an optical fiber sensor technology. J. Mt. Sci. 2011, 8, 728–738.

50. Wang, Y.L.; Shi, B.; Zhang, T.L.; Zhu, H.H.; Jie, Q.; Sun, Q. Introduction to an FBG-based inclinometer and its application to landslide monitoring. J. Civ. Struct. Health Monit. 2015, 5, 645–653.

51. Xu, D.S.; Yin, J.H.; Cao, Z.Z.;Wang, Y.L.; Zhu, H.H.; Pei, H.F. A new flexible FBG sensing beam for measuring dynamic lateral displacements of soil in a shaking table test. Measurement 2013, 46, 200–209.

52. Chang, C.C.; Johnson, G.; Vohra, S.; Althouse, B. Development of fiber Bragg grating based soil pressure transducer for measuring pavement response. Proc. SPIE 2000, 3986, 480–488.

53. Ho, Y.T.; Huang, A.B.; Lee, J.T. Development of a chirped/differential optical fiber Bragg grating pressure sensor. Meas. Sci. Technol. 2008, 19, 1–6.

54. Correia, R.; Li, J.; Chehura, E.; Staines, S.; James, S.W.; Tatam, R.P. Fibre Optic Pressure Sensor for Geotechnical Applications. In Proceedings of the 2nd InternationalWorkshop on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering, Nanjing, China, 18–19 October 2007.

55. Huang, A.B.; Lee, J.T.; Ho, Y.T.; Chiu, Y.F.; Cheng, S.Y. Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements. Soils Found. 2012, 52, 737–747.

56. Wu, J.; Jiang, H.; Su, J.; Shi, B.; Jiang, Y.; Gu, K. Application of distributed fiber optic sensing technique in land subsidence monitoring. J. Civ. Struct. Health Monit. 2015, 5, 587–597.

57. Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295.

58. Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074.

59. Laylor, H.M.; Calvert, S.; Taylor, T.; Schulz, W.L.; Lumsden, R.W.; Udd, E. Fiber optic grating moisture and humidity sensors. Proc. SPIE 2002, 4694, 210–217.

60. Kunzler, W.; Calvert, S.G.; Laylor, M. Measuring humidity and moisture with fiber optic sensors. Proc. SPIE 2003, 5278, 86–93.

61. Yan, J.F.; Shi, B.; Zhu, H.H.;Wang, B.J.;Wei, G.Q.; Cao, D.F. A quantitative monitoring technology for seepage in slopes using DTS. Eng. Geol. 2015, 186, 100–104.

62. Cao, D.; Shi, B.; Zhu, H.; Zhu, K.;Wei, G.; Gu, K. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content. J. Rock Mech. Geotech. Eng. 2016, 8, 212–217.

63. Bense, V.F.; Read, T.; Bour, O.; Le Borgne, T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.; Selker, J.S. Distributed temperature sensing as a downhole tool in hydrogeology. Water Resour. Res. 2016, 52, 9259–9273.

64. Huang, C.J.; Chu, C.R.; Tien, T.M.; Yin, H.Y.; Chen, P.S. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows. Sensors 2012, 12, 5835–5849.

65. Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.; Di Maio, A.; Carlino, S.; De Natale, G.; Boschi, E. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas. Sci. Technol. 2008, 19, 085306.

66. Schroeck, M.; Ecke, W.; Graupner, A. Strain monitoring in steel rock bolts using FBG sensor arrays. Proc. SPIE 2000, 4074, 298–304.

67. Willsch, R.; Ecke, W.; Bartelt, H. Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering. In Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, 6–10 May 2002.

68. Dou, Z.; Li, H. The slope disaster early warning system of fiber Bragg grating anchor bar sensor based on RFID. Appl. Math. Inform. Sci. 2013, 7, 1–4.

69. Ma, Y.; Chen, Y.; Tan, D.; Ma, T. Study on application of fiber Bragg grating strain tube in deep displacement monitoring of pipeline landslide. In Proceedings of the International Conference on Pipelines and Trenchless Technology, Beijing, China, 26–29 October 2011.

70. Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Wang, J. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Eng. Geol. 2015, 186, 34–43.

71. Zhang, Q.; Wang, Y.; Sun, Y.; Gao, L.; Zhang, Z.; Zhang, W.; Zhao, P.; Yue, Y. Using custom fiber Bragg grating-based sensors to monitor artificial landslides. Sensors 2016, 16, 1417.

72. Zhu, H.H.;Wang, Z.Y.; Shi, B.; Wong, J.K.W. Feasibility study of strain based stability evaluation of locally loaded slopes: Insights from physical and numerical modeling. Eng. Geol. 2016, 208, 39–50.

73. Arattano, M.; Marchi, L. Systems and sensors for debris-flow monitoring and warning. Sensors 2008, 8, 2436–2452.

74. Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486.

75. Kunisue, S.; Kokubo, T. In situ formation compaction monitoring in deep reservoirs using optical fibres. In Land Subsidence, Associated Hazards and the Role of Natural Resources Development (EISOLS 2010); Carreón-Freyre, D., Cerca, M., Galloway, D.L., Silva-Corona, J.J., Eds.; IAHS Publ. 339; IAHS:Wallingford, UK, 2010; pp. 368–370.

76. Liu, J.X.; Chai, J.; Wei, S.M.; Li, Y.; Zhu, L.; Qiu, B. Theoretical and experimental study on fiber Bragg grating sensing of rock strata settlement deformation. J. Coal. Sci. Eng. China 2008, 14, 394.

77. Weng, X.L.; Wang, W. Influence of differential settlement on pavement structure of widened roads based on large-scale model test. J. Rock Mech. Geotech. Eng. 2011, 3, 90–96.

78. Weng, X.; Zhu, H.H.; Chen, J.; Liang, D.; Shi, B.; Zhang, C.C. Experimental investigation of pavement behavior after embankment widening using a fiber optic sensor network. Struct. Health Monit. 2015, 14, 46–56.

79. Wang, F.; Zhang, D.M.; Zhu, H.H.; Huang, H.W.; Yin, J.H. Impact of overhead excavation on an existing shield tunnel: Field monitoring and a full 3D finite element analysis. Comput. Mater. Contin. 2013, 34, 63–81.

80. Fergason, K.C.; Rucker, M.L.; Panda, B.B. Methods for monitoring land subsidence and earth fissures in the Western USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 361–366.

81. Zhang, D.; Xu, H.Z.; Shi, B.; Liu, L.L. FBG technology based experimental studies on cracking of expansive soil due to dehydration. J. Eng. Geol. 2012, 20, 103–108. (In Chinese)

82. Schmidt-Hattenberger, C.; Otto, P.; Toepfer, M.; Borm, G.; Baumann, I. Development of fiber Bragg grating (FBG) permanent sensor technology for borehole applications. Proc. SPIE 2004, 5502, 124–127.

83. Klar, A.; Bennett, P.J.; Soga, K.; Mair, R.J.; Tester, P.; Fernie, R.; St John, H.D.; Torp-Peterson, G. Distributed strain measurement for pile foundations. Proc. Inst. Civil Eng. Geotech. Eng. 2006, 159, 135–144.

84. Juang, C.H.; Luo, Z.; Atamturktur, S.; Huang, H. Bayesian updating of soil parameters for braced excavations using field observations. J. Geotech. Geoenviron. Eng. 2013, 139, 395–406.

85. Qi, X.H.; Zhou, W.H. An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points. Comput. Geotech. 2017, 85, 186–198.

86. Habel, W.R. Standards and guidelines: Could they enhance user confidence in fiber sensor technology? Proc. SPIE 2007, 6619, 661906.