Integrated distributed fiber optic sensing technology‐based structural monitoring of the pound lock

Zhan-Pu Song 1, Dan Zhang 1, Bin Shi 1, Shen-En Chen 2, Meng-Fen Shen 3

1 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

2 Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

3 Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

Struct Control Health Monit 2016; 1–8


In this paper, an integrated distributed fiber optic sensing technology, which includes Raman optical time‐domain reflectometry (ROTDR), Brillouin optical time-domain analysis (BOTDA), and fiber Bragg grating (FBG) sensing technologies, is adopted to monitor the temperature and the stress/strain variations of a reinforced concrete pound lock structure during the construction process. The Raman optical time‐domain reflectometry was used to monitor the internal temperature variation throughout the concrete curing process when concrete hydration heat was released in the base plate of the lock head. The FBG temperature sensors were adopted to measure the surface temperature of the concrete, and the temperature data were used to compensate the results that are measured by BOTDA sensing technology to get the real concrete strain of the base plate. To better understand the stress/strain state of the base plate before and after filling water in the lock, the BOTDA sensing cable and FBG temperature sensors monitoring continued throughout the whole construction process. The observation provided a positive indication that the proposed integrated distributed fiber optic sensing technology may have great potential in performance monitoring of hydraulic structures.


control, DFOS technology, hydration heat release, lock, structural monitoring


[1] N. Delatte, Beyond Failure: Forensic Case Studies for Civil Engineers, ASCE Press 2008.

[2] P. Fuhr, R. Huston, J. Struct. Control. 2000, 7(1), 77.

[3] V. Herman, P. Bart, J. Struct. Control. 2003, 10(2), 117.

[4] F. Bastianini, F. Matta, N. Galati, A. Nanni. Proceedings of the SPIE 5765 Smart Structures and Materials: Nondestructive Evaluation for Health Monitoring and Diagnostics, San Diego, March, 2005.

[5] D. Zhang, B. Shi, China Civil Eng. J. 2005, 36(11), 83. (in Chinese)

[6] K. Lim, L. Wong, W. Chiu, J. Kodikara, Struct. Control Health Monit. 2016, 23, 303.

[7] C. Zhang, H. Zhu, B. Shi, F. Wu, J. Yin, J. Compos. Constr. 2015, ASCE, 19(3) 04014062.

[8] C. Lan, Z. Zhou, O. J, Struct. Control. Health Monit. 2013, 21(3), 317.

[9] G. Cheng, B. Shi, H. Zhu, C. Zhang, J.Wu, J. Civ. Struct. Heal. Monit. 2015, 5(5), 1.

[10] B. Shi, X. Xu, D. Wang, T. Wang, D. Zhang, Y. Ding, H. Xu, H. Cui, Chin. J. Rock Mech. Eng. 2005, 24(15), 2622. (in Chinese)

[11] Z. Zhou, J. He, K. Yan, J. Ou, Opt. Eng. 2008, 47(1), 014401.

[12] C. Sbarufatti, A. Manes, M. Giglio, Struct. Control Health Monit. 2013, 21(7), 1057.

[13] B. Glisic, D. Inaudi, Fibre Optic Methods for Structural Health Monitoring. New York: John Wiley & Sons; 2008. ISBN: 978‐0‐470‐51780‐2

[14] N. Hiroshi, F. Kazuhiko, O. Masaru. The 1st International Workshop on Opto-electronic Sensor-based Monitoring in Geo-engineering 2005; Nanjiang, China, 57–65.

[15] K. Chang, H. Han. The 1st International Workshop on Opto-electronic Sensor-based Monitoring in Geo-engineering 2005; Nanjiang, China, 91–96.

[16] K. Koji, F. Kazuhiko, O. Masaru, Proc. SPIE 2002, 4920, 352.

[17] H. Zhu, B. Shi, J. Zhang, J. Yan, C. Zhang, J. Mt. Sci. 2014, 11(4), 979.

[18] Y. Lu, B. Shi, G.Wei, S. Chen, D. Zhang, Smart Mater. Struct. 2012, 21(11), 115011.

[19] B. Shi, H. Xu, B. Chen, D. Zhang, Y. Ding, H. Cui, J. Gao, Mar. Georesour. Geotechnol. 2003, 21(3–4), 333.

[20] F. Matta, F. Bastianini, N. Galati, P. Casadei, A. Nanni, J. Perform. Constr. Facil. 2008, 22(4), 264.

[21] Z. Zhou, J. He, K. Yan, J. Ou. Proceedings of the SPIE 6530 Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring, California, April, 2007.

[22] P. Fuhr, D. Huston, T. Ambrose, D. A. Barker. In 1994 North American Conference on Smart Structures and Materials, Orlando, February, 1994.

[23] K. Hill, Y. Fujii, D. Johnson, B. Kawasaki, Appl. Phys. Lett. 1978, 32, 647.

[24] K. Grattan, T. Sun, Sensors Actuators A Phys. 2000, 82(1), 40.

[25] Y. Lin, Y. Chen, Optoeletronic Technol. Inform. 2002, 15, 33. (in Chinese)

[26] T. Horiguchi, M. Tateda, Theory. J. Lightwave Technol. 1989, 7(8), 1170.

[27] R. Bernini, A. Minardo, L. Zeni, Opt. Eng. 2002, 41(9), 2186.

[28] A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, US, 1999.

[29] D. Cai, H. Dai, S. Cai, SHUILIXUEBAO 2005, 5, 88. (in Chinese)