Infrastructure sensing

Kenichi Soga 1 and Jennifer Schooling 2

1 University of California-Berkeley, Berkeley, CA 94720, USA

2Cambridge Centre for Smart Infrastructure and Construction, University of Cambridge, Cambridge CB2 1PZ, UK

Interface Focus 6: 20160023.

http://dx.doi.org/10.1098/rsfs.2016.0023

Keywords: sensor technologies, civil engineering infrastructure, behaviour patterns 

ABSTRACT: Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

References

1. HM Treasury. 2014 National Infrastructure Plan. UK.

2. ICE. 2014 State of nation. London, UK: Institution of Civil Engineers.

3. ASCE. 2013 Report card for America’s infrastructure. Reston, VA: American Society of Civil Engineers.

4. Frost and Sullivan. 2014 Strategic opportunity analysis of the global smart city market. Presentation.

5. British Standards Institution. 2014 ISO 55000 Series: asset management. BSI Group.

6. Lu Y, Zhu T, Chen L, Bao X. 2010 Distributed vibration sensor based on coherent detection of

phase-OTDR. J. Lightwave Technol. 28, 3243–3249.

7. Hartog AH, Leach AP, Gold MP. 1985 Distributed temperature sensing in solid-core fibre. Electron. Lett. 21, 1061–1062. (doi:10.1049/el:19850752)

8. Horiguchi T, Kurashima T, Tateda M. 1989 Tensile strain dependence of Brillouin frequency shift in silica optical fibres. IEEE Photonics Technol. Lett. 1, 107–108. (doi:10.1109/68.34756)

9. Kurashima T, Horiguchi T, Tateda M. 1990 Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibres. Opt. Lett. 5, 1038–1040. (doi:10.1364/OL.15.001038)

10. Nikle`s M, The´venaz L, Robert PA. 1996 Simple distributed fibre sensor based on Brillouin gain spectrum analysis. Opt. Lett. 21, 758–760. (doi:10.1364/OL.21.000758)

11. Garus D, Golgolla T, Krebber K, Schliep F. 1997 Brillouin optical frequency-domain analysis for distributed temperature and strain measurements. J. Lightwave Technol. 15, 654–662. (doi:10.1109/50.566687)

12. Hotate K, Hasegawa T. 2000 Measurement of Brillouin gain spectrum distribution along an optical fibre with a high spatial resolution using a correlation-based technique—proposal, experiment and simulation. IEICE Trans. Electron E83-C, 405–411.

13. Bao X, Li W, Chen L. 2012 Chapter 19. Distributed fibre sensors based on light scattering in optical fibres. In Handbook of optical sensors, V.1: optical sensors and measurement techniques; Section III: fibre optic sensors. Oxford, UK: Taylor & Francis.

14. Gue CY, Wilcock M, Alhaddad MM, Elshafie MZBE, Soga K, Mair RJ. 2015 The monitoring of an existing cast iron tunnel with distributed fibre optic sensing (DFOS). J. Civil Struct. Health Monit. 5, 573–586. (doi:10.1007/s13349-015-0109-8)

15. Soga K. 2014 Understanding the real performance of geotechnical structures using an innovative fibre optic distributed strain measurement technology. Riv. Ital. Geotech. 48, 7–48.

16. Soga K, Kwan V, Pelecanos L, Rui Y, Schwamb T, Seo H, Wilcock M. 2015 The role of distributed sensing in understanding the engineering performance of geotechnical structures. In Geotechnical engineering for infrastructure and development, XVI ECSMGE, pp. 13–48, London, UK: ICE Publishing.

17. Kechavarzi C, Soga K, de Battista N, Pelecanos L, Elshafie M, Mair RJ. 2016 Distributed optical fibre sensing for monitoring geotechnical infrastructure—a practical guide. London, UK: ICE Publishing.

18. Chaiyasarn K. 2011 Detection and monitoring of damage for tunnel inspection based on Computer Vision. PhD dissertation, University of Cambridge, Cambridge.

19. Hartley R, Zisserman A. 2000 Multiple view geometry in computer vision. Cambridge, UK: Cambridge University Press.

20. Snavely N, Seitz S, Szeliski R. 2006 Photo tourism: exploring photo collections in 3D. ACM Trans. Graphics 25, 835–846. (doi:10.1145/1141911.1141964)

21. Sharan L, Liu C, Rosenholtz R, Adelson EH. 2013 Recognizing materials using perceptually inspired features. Int. J. Comput. Vis. 103, 348–371. (doi:10.1007/s11263-013-0609-0)

22. Federal Highway and Transit Administration. 2005 Highway and rail transit tunnel inspection manual. Washington, DC: U.S. Department of Transportation.

23. Stent S, Gherardi R, Stenger B, Soga K, Cipolla R. 2014 Visual change detection on tunnel linings. Mach. Vis. Appl. 27, 319–330. (doi:10.1007/s00138-014-0648-8)

24. Chaiyasarn K, Kim TK, Viola F, Cipolla R, Soga K. 2016 Towards distortion-free image mosaicing for tunnel inspection based on robust cylindrical surface estimation via structure from motion. ASCE J. Comput. Civil Eng. 30, 04015045.

25. Hoult NA, Bennnet PJ, Stoianov I, Maksimovic´ C, Middleton CR, Graham NJG, Soga K. 2009 Wireless sensor networks: creating ‘Smart Infrastructure’. In Proc. of ICE, Civil Engineering, vol. 162, August 2009, pp. 136–143.

26. Rodenas-Herra´iz D, Soga K, Fidler P, de Battista N. 2016 Wireless sensor networks for civil infrastructure monitoring—a best practice guide, London, UK: ICE Publishing.

27. Stajano F, Hoult N, Wassell I, Bennett P, MiddletonC, Soga K. 2010 Smart bridges, smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Netw. 8, 872–888. (doi:10.1016/j.adhoc.2010.04.002)

28. Bennett PJ, Kobayashi Y, Soga K, Wright P. 2010 Wireless sensor network for monitoring of underground tunnel. ICE, Geotech. Eng., 163, 147–156. (doi:10.1680/geng.2010.163.3.147)

29. Bennett PJ, Soga K, Wassell IJ, Fidler P, Abe K, Kobayashi Y, Vanicek M. 2010 Wireless sensor networks for underground railway applications: case studies in Prague and London. Smart Struct. Syst. 6, 619–639. (doi:10.12989/sss.2010.6.5_6.619)

30. Alhaddad M et al. 2014 Multi-suite monitoring of an existing cast iron tunnel subjected to tunnellinginduced ground movements. In Proc. Geo-Shanghai 2014 Int. Conf. Shanghai, China, 26–28 May. Geotechnical Special Publication no. 242, pp. 293–307.

31. Xu X, Soga K, Nawaz S, Moss N, Bowers K, Gajia M. 2015 Performance monitoring of timber structures in underground construction using wireless SmartPlank. Smart Struct. Syst. 15, 769–785. (doi:10.12989/sss.2015.15.3.769)

32. Belsito L, Ferri M, Mancarella F, Masini L, Yan J, Seshia AA, Soga K, Roncaglia A. 2016 Fabrication of high-resolution strain sensors based on wafer-level vacuum packaged MEMS resonators. Sens. Actuators, A, 239, 90–101. (doi:10.1016/j.sna.2016.01.006)

33. Ferri M, Cristiani S, Roncaglia A, Kobayashi Y, Soga K. 2008 A packaging technique for silicon MEMS strain sensors on steel. In Proc. of IEEE Sensors, art. no. 4716737, pp. 1524–1527.

34. Ferri M, Mancarella F, Seshia A, Ransley J, Soga K, Zalesky J, Roncaglia A. 2009 Development of MEMS strain sensors for crack monitoring in ageing civil infrastructures. Smart Struct. Syst. 6, 225–238. (doi:10.12989/sss.2010.6.3.225)

35. Priya S, Inman D. 2009 Energy Harvesting Technologies. New York, NY: Springer.

36. Ye G, Soga K. 2012 Energy harvesting from water distribution systems. J. Power Eng. ASCE 138, 7–17.

37. Jia Y, Yan J, Soga K, Seshia AA. 2013 Parametrically excited MEMS vibration energy harvesters with design approaches to overcome initiation threshold amplitude. J. Micromech. Microeng. 23, 114007. (doi:10.1088/0960-1317/23/11/114007)

38. Jia Y, Yan J, Soga K, Seshia AA. 2014 A parametrically excited vibration energy harvester. J. Intell. Mat. Syst. Struct. 25, 278–289. (doi:10.1177/1045389X13491637)

39. Jia Y, Yan J, Soga K, Seshia AA. 2014 Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Struct. Syst. 23, 065011. (doi:10.1088/0964-1726/23/6/065011)