Pressurized line pipe wall thinning detection using a distributed fiber-optic sensing system

Yu-Lin Shen a and Chow-Shing Shin b

a Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan, ROC;

b Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, ROC

Journal of the Chinese Institute of Engineers, 2016


Wall thinning defects in steel pipes are usually localized and are difficult to detect using traditional sensors that have a small coverage and limited measuring range. A distributed fiber sensor, based on the Brillouin backscattering sensing system, has been demonstrated to be able to measure the strain and detect the defect in a pipe accurately. A 1.8 m pipe segment that contains artificial thinning from 13 to 60% of wall thickness at various positions was subjected to an internal pressure of 350 kgf/cm2. Hoop strain distribution along the whole pipe segment was monitored by a single optical fiber. The measured strains compared favorably with strain gauge results. The method proposed in this study shows promising results for the detection of the existence and location of wall thinning defects in long distance pressurized pipe.


Brillouin backscattering; wall thinning defects; pressurized piping; distributed fiber sensing


  • Feng, X., W. Wu, X. Li, X. Zhang, and J. Zhou. 2015. “Experimental Investigations on Detecting Lateral Buckling for Subsea Pipelines with Distributed Fiber Optic Sensors.” Smart Structures and Systems 2 (15): 245–258. doi: 10.12989/sss.2015.15.2.245.
  • Gloria, N. B. S., M. C. L. Areiza, I. V. J. Miranda, and J. M. A. Rebello. 2009. “Development of a Magnetic Sensor for Detection and Sizing of Internal Pipeline Corrosion Defects.” NDT & E International 42 (8): 669–677. doi: 10.1016/j.ndteint.2009.06.009.
  • Hotate, K. 2005. “Correlation-based Continuous-wave Technique for Optical Fiber Distributed Strain Measurement Using Brillouin Scattering.” In Proceedings of the 17th International Conference on Optical Fiber Sensors, Bruges, 23 May 2005: vol. 5855: 62–67. USA: SPIE.
  • Hotate, K., and M. Tanaka. 2002. “Distributed Fiber Brillouin Strain Sensing with 1-cm Spatial Resolution by Correlation-based Continuous-wave Technique.” IEEE Photonics Technology Letters 14 (2): 179–181. doi: 10.1109/68.980502.
  • Inaudi, D., and B. Glisic. 2010. “Long-range Pipeline Monitoring by Distributed Fiber Optic Sensing.” Journal of Pressure Vessel Technology 132 (1): 11701–11709. doi: 10.1115/1.3062942.
  • Lim, K., L. Wong, W. K. Chiu, and J. Kodikara. 2015. “Distributed Fiber Optic Sensors for Monitoring Pressure and Stiffness Changes in Out-of-round Pipes.” In Structural Control Health Monitoring. 23: 303–314. New Jersey: Wiley. doi: 10.1002/stc.1771.
  • Lin, Y. B., T. K. Lin, C.-C. Chen, J. C. Chiu, and K. C. Chang. 2006. “Online Health Monitoring and Safety Evaluation of the Relocation of a Research Reactor Using Fiber Bragg Grating Sensors.” Smart Materials and Structures 15 (5): 1421–1428. doi: 10.1088/0964-1726/15/5/031.
  • Matsumoto, T., M. Kishi, and K. Hotate. 2014. “Discriminative and Distributed Measurement of Temperature and Strain with Timedivision Pump-probe-read Light Generation by Single Laser Diode in Simplified BOCDA System.” In Proceedings of 23rd International Conference on Optical Fibre Sensors, edited by J. M. López-Higuera, J.
  • Jones, M. López-Amo, and J. L. Santos, Santander, 2 June 2014: vol. 9157: 91573W. USA: SPIE.
  • Skjelvareid, M. H., Y. Birkelund, and Y. Larsen. 2013. “Internal Pipeline Inspection Using Virtual Source Synthetic Aperture Ultrasound Imaging.” NDT & E International 54: 151–158. doi: 10.1016/j.ndteint.2012.10.005.
  • Wan, K. T., and C. K. Y. Leung. 2007a. “Fiber Optic Sensor for the Monitoring of Mixed Mode Cracks in Structures.” Sensors and Actuators A: Physical 135(2): 370–380. doi: 10.1016/j.sna.2006.08.002.
  • Wan, K. T., and C. K. Y. Leung. 2007b. “Applications of a Distributed Fiber Optic Crack Sensor for Concrete Structures.” Sensors and Actuators a: Physical 135 (2): 458–464. doi: 10.1016/j.sna.2006.09.004.
  • Yin, X., D. A. Hutchins, G. Chen, and W. Li. 2012. “Detecting Surface Features on Conducting Specimens through an Insulation Layer Using a Capacitive Imaging Technique.” NDT & E International 52: 157–166. doi: 10.1016/j.ndteint.2012.08.004.
  • Zou, L., G. Ferrier, S. A. Vihid, Q. Yu, L. Chen, and X. Bao. 2004. “Distributed Brillouin Scattering Sensor for Discrimination of Wall-thinning Defects in Steel Pipe under Internal Pressure.” Applied Optics 43 (7): 1583–1588. doi: 10.1364/AO.43.001583.
  • Zou, L., O. Sezerman, and W. Revie. 2008. “Pipeline Corrosion Monitoring by Fiber Optic Distributed Strain and Temperature Sensors.” In Proceedings of International Corrosion Conference NACE, New Orleans, LA, 08146/1–08146/8, 16–20 March 2008. Houston, TX: NACE International.