Safety Monitoring of Railway Tunnel Construction Using FBG Sensing Technology

X.W. Ye 1,2,*, Y.Q. Ni 3 and J.H. Yin 3

1 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China

2 Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

3 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Advances in Structural Engineering Vol. 16 No. 8 2013

Abstract: In comparison with above-ground structures, the investigation of underground space structures still faces great challenges because of the extremely complicated constitutive relationships of the soils or rocks. Implementation of structural health monitoring (SHM) systems on the underground structures such as tunnels commencing from the construction stage may be of help in understanding their operational behaviors and long-term trends. This paper explores the application of the fiber Bragg grating (FBG) sensing technology for safety monitoring during railway tunnel construction. An FBG-based temperature monitoring system is first developed for real-time temperature measurement of the frozen soils during freezing construction of a metro-tunnel cross-passage. Through in-situ deployment of FBG-based liquid level sensors, the subgrade settlement of a segment of a high-speed rail line is then monitored in an automatic manner during construction of an undercrossing tunnel. The field results indicate that the FBG sensors are robust and reliable in perceiving temperature and strain variations even in harsh environments.

Key words: railway tunnel, construction monitoring, safety evaluation, FBG sensors, temperature, settlement.


Abdelkrim, M., Bonnet, G. and de Buhan, P. (2003). “A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading”, Computers and Geotechnics, Vol. 30, No. 6, pp. 463−476.

Ansari, F. (2007). “Practical implementation of optical fiber sensors in civil structural health monitoring”, Journal of Intelligent Material Systems and Structures, Vol. 18, No. 8, pp. 879−889.

Barbosa, C., Costa, N., Ferreira, L.A., Araujo, F.M., Varum, H., Costa, A., Fernandes, C. and Rodrigues, H. (2008). “Weldable fibre Bragg grating sensors for steel bridge monitoring”, Measurement Science and Technology, Vol. 19. No. 12, pp. 1−10.

Bhalla, S., Yang, Y.W., Zhao, J. and Soh, C.K. (2005). “Structural health monitoring of underground facilities: technological issues and challenges”, Tunnelling and Underground Space Technology, Vol. 20, No. 5, pp. 487−500.

Chai, J.C. and Minura, N. (2002). “Traffic-load-induced permanent deformation of road on soft subsoil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 11, pp. 907−916.

Chan, T.H.T., Yu, L., Tam, H.Y., Ni, Y.Q., Liu, S.Y., Chung, W.H. and Cheng, L.K. (2006). “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma Bridge: background and experimental observation”, Engineering Structures, Vol. 28, No. 5, pp. 648−659.

Costa, B.J.A. and Figueiras, J.A. (2012). “Fiber optic based monitoring system applied to a centenary metallic arch bridge: design and installation”, Engineering Structures, Vol. 44, pp. 271−280.

Filograno, M.L., Guillen, P.C., Rodriguez-Barrios, A., Martin-Lopez, S., Rodriguez-Plaza, M., Andres-Alguacil, A. and Gonzalez-Herraez, M. (2012). “Real-time monitoring of railway traffic using fiber Bragg grating sensors”, IEEE Sensors Journal, Vol. 12, No. 1, pp. 85−92.

Grattan, K.T.V. and Sun, T. (2000). “Fiber optic sensor technology: an overview”, Sensors and Actuators, Vol. 82, No. 1-3, pp. 40−61.

Hill, K.O., Malo, B., Bilodeau, F., Johnson, D.C. and Albert, J. (1993). “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Applied Physics Letters, Vol. 62, No. 10, pp. 1035−1037.

Kang, D. and Chung, W. (2009). “Integrated monitoring scheme for a maglev guideway using multiplexed FBG sensor arrays”, NDT&E International, Vol. 42, No. 4, pp. 260−266.

Kashyap, R. (2010). Fiber Bragg Gratings, Academic Press, Burlington, MA, USA.

Kerrouche, A., Boyle, W.J.O., Gebremichael, Y., Sun, T., Grattan, K.T.V., Taljsten, B. and Bennitz, A. (2008). “Field tests of fibre Bragg grating sensors incorporated into CFRP for railway bridge strengthening condition monitoring”, Sensors and Actuators A: Physical, Vol. 148, No. 1, pp. 68−74.

Ko, J.M. and Ni, Y.Q. (2005). “Technology developments in structural health monitoring of large-scale bridges”, Engineering Structures, Vol. 27, No. 12, pp. 1715−1725.

Li, D.Q. and Ernest, E.T. (1996). “Cumulative plastic deformation for fine-grained subgrade soils”, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 12, pp. 1006−1013.

Li, H.N., Li, D.S. and Song, G.B. (2004). “Recent applications of fiber optic sensors to health monitoring in civil engineering”, Engineering Structures, Vol. 26, No. 11, pp. 1647−1657.

Lin, Y.B., Chen, J.C., Chang, K.C., Chern, J.C. and Lai, J.S. (2005). “Real-time monitoring of local scour by using fiber Bragg grating sensors”, Smart Materials and Structures, Vol. 14, No. 4, pp. 664−670.

Lopez-Higuera, J.M., Cobo, L.R., Incera, A.Q. and Cobo, A. (2011). “Fiber optic sensors in structural health monitoring”, Journal of Lightwave Technology, Vol. 29, No. 4, pp. 587−608.

Majumder, M., Gangopadhyay, T.K., Chakraborty, A.K., Dasgupta, K. and Bhattacharya, D.K. (2008). “Fibre Bragg gratings in structural health monitoring - present status and applications”, Sensors and Actuators A: Physical, Vol. 147, No. 1, pp. 150−164.

Merzbacher, C.I., Kersey, A.D. and Friebele, E.J. (1996). “Fiber optic sensors in concrete structures: a review”, Smart Materials and Structures, Vol. 5, No. 2, pp. 196−208.

Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009). “Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower”, Structural Control and Health Monitoring, Vol. 16, No. 1, pp. 73−98.

Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010). “Monitoring-based fatigue reliability assessment of steel bridge: analytical model and application”, Journal of Structural Engineering, ASCE, Vol. 136, No. 12, pp. 1563−1573.

Ni, Y.Q., Xia, H.W., Wong, K.Y. and Ko, J.M. (2012a). “In-service condition assessment of bridge deck using long-term monitoring data of strain response”, Journal of Bridge Engineering, ASCE, Vol. 17, No. 6, pp. 876−885.

Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012b). “Modeling of stress spectrum using long-term monitoring data and finite mixture distributions”, Journal of Engineering Mechanics, ASCE, Vol. 138, No. 2, pp. 175−183.

Surre, F., Scott, R.H., Banerji, P., Basheer, P.A.M., Sun, T. and Grattan, K.T.V. (2012). “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications”, Sensors and Actuators A: Physical, Vol. 185, pp. 8−16.

Tomas, R., Garcia-Barba, J., Cano, M., Sanabria, M.P., Ivorra, S., Duro, J. and Herrera, G. (2012). “Subsidence damage assessment of a Gothic church using differential interferometry and field data”, Structural Health Monitoring, Vol. 11, No. 6, pp. 751−762.

Wang, C.Y., Tsai, H.C., Chen, C.S. and Wang, H.L. (2011). “Railway track performance monitoring and safety warning system”, Journal of Performance of Constructed Facilities, ASCE, Vol. 25, No. 6, pp. 577−586.

Wei, C.L., Lai, C.C., Liu, S.Y., Chung, W.H., Ho, T.K., Tam, H.Y., Ho, S.L., McCusker, A., Kam, J. and Lee, K.Y. (2010). “A fiber Bragg grating sensor system for train axle counting”, IEEE Sensors Journal, Vol. 10, No. 12, pp. 1905−1912.

Wright, P. (2010). “Assessment of London underground tube tunnels – investigation, monitoring and analysis”, Smart Structures and Systems, Vol. 6, No. 3, pp. 239−262.

Yan, L.S., Zhang, Z.T., Wang, P., Pan, W., Guo, L.K., Luo, B., Wen, K.H., Wang, S.G. and Zhao, G.F. (2011). “Fiber sensors for strain measurements and axle counting in high-speed railway applications”, IEEE Sensors Journal, Vol. 11, No. 7, pp. 1587−1594.

Yau, M.H., Chan, T.H.T., Thambiratnam, D.P. and Tam, H.Y. (2013). “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors”, Advances in Structural Engineering, Vol. 16, No. 1, pp. 165−176.

Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012). “Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data”, Engineering Structures, Vol. 45, pp. 166−176.