Pilot Study on Rugged Fiber Optic Brillouin Sensors for Large-Strain Measurements to Ensure the Safety of Transportation Structures

Pilot Study on Rugged Fiber Optic Brillouin Sensors for Large-Strain Measurements to Ensure the Safety of Transportation Structures

Genda Chen, Professor

Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology

Zhi Zhou, Graduate Research Assistant

Hai Xiao, Professor

Ying Huang, Graduate Research Assistant

Abstract

Brillouin-scattering Optical Time Domain Reflectometry (BOTDR) is a viable technology for simultaneous, distributed strain and temperature measurements for miles-long transportation structures. It is a promising tool to ensure the smooth operation and safety of bridge structures that are key links in surface transportation networks or between various transportation modes: i.e., from airport to train station. Currently, telecom-grade optical fibers are widely used in civil engineering for strain and temperature measurements. These fibers are very fragile and easy to break during installation and measurement. In order to understand the ultimate behavior of structures, more rugged optical fibers such as carbon/polyimide coated fibers were recently proposed. One laboratory study on two single fibers indicated that new carbon/polyimide coated fibers can sustain a maximum strain of up to 4%, which can survive any local crack in concrete members or buckling in steel members once they are installed on the structural members. This project aimed to characterize the ruggedness and signal loss of various packaged optical fibers and validate their performance as sensors. Among the tested optical fibers, bare single-mode fibers (SMF-28) with uncoated anchoring have the lowest shear strength and the lowest ultimate strain under tension, and are thus not suitable to apply in harsh environments. Polyimide-coated optical fibers have the highest shear strength and the highest ultimate strain under tension, making them the best candidate for civil infrastructure applications. Both glass fiber reinforcing polymer (GFRP) and carbon coated optical fibers are sufficiently rugged to be applied to civil infrastructure.

References

Afshar V, S., L. Chen, and X. Bao. 2005. “CW Pre-injection of Pump-probe Brillouin Sensors for High Spatial and Strain (Temperature) Resolutions.” Proc. of SPIE 5855:5767.

Bao, X., D. J. Webb, and D. A. Jackson. 1994b. “Combined Distributed Temperature and Strain Sensor Based on Brillouin Loss in an Optical Fiber.” Optics Letters 19:141-143.

Bao, X., D. J. Webb, and D. A. Jackson. 1993. “Characteristics of Brillouin Gain Based Distributed Temperature Sensors.” Electronics Letters 29.17:1543-4.

Bao, X., D. J. Webb, and D. A. Jackson. 1994. “Recent Progress in Experiments on a Brillouin Loss-based Distributed Sensor.” SPIE - Int Soc Optical Engineering 20372:506-9.

Bao, X., J. Smith, and A. Brown. 2002. “Temperature and Strain Measurements Using the Power, Line-width, Shape, and Frequency Shift of the Brillouin Loss Spectrum.” Proc. of SPIE 4920:311.

Bao, X., L. Zou, Q. Yu, and L. Chen. 2004. “Development and Applications of the Distributed Temperature and Strain Sensors Based on Brillouin Scattering.” IEEE Journal 4:1210-1213.

Bastianini, F., M. Cargnelutti, A. Di Tommaso, and M. Toffanin. 2003. “Distributed Brillouin Fiber Optic Strain Monitoring Applications in Advanced Composite Materials.” Proceedings of the 10th SPIE Annual Symposium on Smart Structures and Materials, 5057:478-485.

Bastianini, F., A. Rizzo, N. galati, U. Deza, and A. Nanni. 2005. “Discontinuous Brillouin Strain Monitoring of Small Concrete Bridges Comparison between Near-to-surface and Smart FRP Fiber Installation Techniques.” Proc. of SPIE 5765:612.

Brown, K., A. W. Brown, and B. G. Colpitts. 2006. “Combined Raman and Brillouin Scattering Sensor for Simultaneous High-resolution Measurement of Temperature and Strain.” Proc. of SPIE 6167:309-318.

Chen, G., B. Xu, R. McDaniel, X. Ying, D. Pommerenke, and Z. Wu. 2005. “Distributed Strain Measurement of a Large-scale Reinforced Concrete Beam-column Assembly under Cyclic Loading”, Proc. of SPIE 5765:516.

Culverhouse, D., F. Farahi, C. N. Pannell, and D. A. Jackson. 1989. “Potential of Stimulated Brillouin Scattering as Sensing Mechanism for Distributed Temperature Sensors.” Electronics Letters 25.14:913-915.

Davis, M. A., A. D. Kersey. 1996. “Separating the Temperature and Strain Effects on Fiber Bragg Grating Sensors Using Stimulated Brillouin Scattering.” Proc. of SPIE 2718:270-278.

DeMerchant, M. D., A. W. Brown, X. Bao, and T. W. Bremner. 1998. “Automated System or Distributed Sensing.” Proc. of SPIE 3330:315.

Ding, Y., B. Shi, Y. Sun, and Y. Zhao. 2006. “Monitoring on the Arch Rings Deformation in the NO.3 Tunnel of Bainijing with BOTDR Based Strain Measurement Technique.” Journal of Engineering Geology 15.4:649-653.

Fellay, A., L. Thévenaz, M. Facchini, M. Nikles, and P. Robert. 1997. “Distributed Sensing Using Stimulated Brillouin Scattering : towards Ultimate Resolution.” OSA Technical Digest Series 16:324-327.

He, J. P., Z. Zhou, Y. Huang, and J. Ou. 2008. “Study on RC Beams Using BOTDA(R)-FRP-OF Technique.” Proc. of SPIE 6933:69330U-7.

He, Y. J., C. Q. Yin, Y. Q. Li, and Z. Zhang. 2004. “A Novel BOTDR System Based on all Fiber Mach-Zehnder Interferometer.” Act Photonica Sinica 33.6:721-724.

Horiguchi, T. K. Shimizu, T. Kurshima, and Y. Koyamada. 1995. “Advances in Distributed Sensing Techniques Using Brillouin Scattering.” Proc. of SPIE 2507:126-135.

Horiguchi, T., T. Kurashima, and M. A. Tateda. 1990. “A Technique to Measure Distributed strain in Optical Fibers.” IEEE Photonics technology Letters 2.5:352-354.

Horiguchi, T., T. Kurashima, and M. A. Tateda. 1989. “Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers.” IEEE Photonics technology Letters 1.5:107-108.

Inaudi, D. and B. Glisic. 2006. “Integration of Distributed Strain and Temperature Sensors in Composite Coiled Tubing.” Proc. of SPIE 6167:17.

Inaudi, D. and B. Glisic. 2006. “Reliability and Field Testing of Distributed Strain and Temperature Sensors.” Proc. of SPIE 6167:6167D.

Inaudi, D. and B. Glisic. 2005. “Development of Distributed Strain and Temperature Sensing cables.” Proc. of SPIE 5855:222-225.

Kato, S. and H. Kohashi. 2006. “Study on the Monitoring System of Slope Failure Using Optical Fiber Sensors.” Proc. of ASCE 187.34:1-6.

Kee, H. H., G. P. Lees, and T. P. Newson. 2000. “Spontaneous Brillouin-based Distributed Temperature Fiber Sensor with 35-cm Spatial Resolution.” Proc. of SPIE 4074:237-244.

Kinzo, K., C. H. Li, and K. Nishiguchi. 2005. “Pulse Pre-pump Method for cm-order Spatial Resolution of BOTDA.” Proc. of SPIE 5855:559-562.

Kurashima, T., T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada. 1993. “Brillouin Optical-fiber Time Domain Reflectometry.” IEICE TRANSACTIONS on Communications E76-B.4:382-390.

Kurashima, T., T. Horiguchi, H. Ohno, and H. Izumita. 1998. “Strain and Temperature Characteristics of Brillouin Spectra in Optical Fibers for Distributed Sensing Techniques.” Proc. of ECOC’’98, 1:149-150.

Kwon, I. B., C. Y. Kim and M. Y. Choi. 2002. “Continuous Measurement of Temperature Distributed on a Building Construction.” Proc. of SPIE 4696:273-283.

Liang, C., B. Shi, and H. Xu. 2004. “BOTDR Optical Fiber Temperature Monitoring Technique and Its Application in Civil Engineering.” Journal of Disaster Prevention and Mitigation Engineering 24.3:252-235.

Liu, D. and M. Song. 2005. “A Novel BOTDA Technique Based on Continuous Lightwave Pump.” Optical Instruments 27.3:1.

Liu, J., B. Shi, D. Zhang, H. Sui, and W. Suo. 2006. “Experimental Study of Foundation Pit Monitoring Using BOTDR-based on Distributed Optical Fiber Sensor.” Rock and Soil Mechanics 27.7:1225-1233.

Mizuno, Y., Z. He, and K. Hotate. 2008. “Brillouin Optical Correlation-Domain Reflectometry with 13-mm Spatial Resolution and 50-Hz Sampling Rate.” Proc. of Lasers and Electro-Optics CLEO:CMZ2.

Mohamad, H., P. J. Bennett, K. Soga, R. J. Mair, C. S. Lim, C. K. Knight-Hassell, and C. N. Ow. 2007. “Monitoring Tunnel Deformation Induced By Close-Proximity Bored Tunneling Using Distributed Optical Fiber Strain Measurements.” Proc. of ASCE 307.84:1-13.

Naruse, H., K. Komatsu, K. Fujihashi and M. Okutsu. 2005. “Telecommunications tunnel monitoring system based on distributed optical fiber strain measurement.” Proc. of SPIE 5855:168.

Nikles, M., L. Thevenaz, and P. Robert. 1997. “Brillouin Gain Spectrum Characterization in Single-mode Optical fibers.” Journal of Lightwave Technology 15.10:1842-1851.

Zhang, C., W. Li, X. Bao, L. Chen, and M. Du. 2007. “Tensile Strain Dependence of the Brillouin Gain Spectrum in Carbon/polyimide Coated Fibers.” Optics Letters 32.17:2565-2567.

Ou,J. P., Z. Zhou,and G. Chen. “Fiber Bragg Grating Sensors in Civil Engineering Applications.” Chapter 8 in Fiber Bragg Grating Sensors: Research Advancements, Industrial Applications and Market Exploration, Edited by Dr. Andrea Cusano, Antonello

Cutolo, and Jacques Albert from the Optoelectronic Division, Department of Engineering, University of Sannio, 82100 Benevento, Italy, Bentham Science Publishers, ISBN No. 978-1-60805-084-0, E-Book Program, www.bentham.org/ebooks, 2011.

Parker, T. R., M. Farhadiroushan, V. A. Handerek, and A. J. Rogers. 1997. “A Fully Distributed Simultaneous Strain and Temperature Sensor using Spontaneous Brillouin Backscatter.” IEEE Photonics Technology Letters 9.7:979-981.

Rao, Y., J. D. C. Jones, H. Naruse, and R. I. Chen. 2002. “System for Measuring Temperature and Strain Separately by BOTDR and OTDR.” Proc. of SPIE 4920:274.

Shi, B., H. B. Sui, J. Liu, D. Zhang, W. Zhang, and J. Q. Gao. 2005. “Study on BOTDR-based Distributed Optical Fiber Strain Measurement for Tunnel Health Diagnosis.” Chinese Journal of Rock Mechanics and Engineering 24.15:2622-2628.

Shimada, A., H. Naruse, K. Uzawa, H. Murayama, and K. Kageyama. 2000. “Development of Integrated Damage Detection System for International America's Cup Class Yacht Structures Using a Fiber Optic Distributed Sensor.” Proc. of SPIE 3986:324.

Smith, J., A. Brown, M. D. Demerchant, and X. Bao. 1999. “Simultaneous Strain and Temperature Measurement Using a Brillouin-scattering-based Distributed Sensor.” Proc. of SPIE 3670:366.

Song, M. and X. Zhang. 2005. “Design and Realization of Brillouin Optical Time Domain Reflectometer with 34km in Sensing Length.” Journal of Instrumentation 26.11:1155-1158.

Tateda, M., T. Horiguchi. 1989. “Advances in Optical Time Domain Reflectometry.” Journal of Lightwave Technology 7.8:1217-1224.

Thevenaz, L., M. Nikles, A. Fellay, M. Facchini, and P. A. Robert. 1998. “Applications of Distributed Brillouin Fiber Sensing.” Proc. of SPIE 3407:374-381.

Wu, Z., B. Xu, K. Hayashi, and A. Machida. 2006. “Distributed Optic Fiber Sensing for a Full-scale PC Girder Strengthened with Prestressed PBO Sheets.” Engineering Structures 28: 1049-1059.

Yari, T., K. Nagai, and T. Shimuzi. 2003. “Overview of Damage Detection and Damage Suppression Demonstrator and Strain Distribution Measurement Using Distributed BOTDR Sensors.” Proc. of SPIE 5054:175.

Yu, Q., X. Bao, and L. Chen. 2004. “Simultaneous Strain and Temperature Measurement in PM Fibers Using Brillouin Frequency, Power and Bandwidth.” Proc. of SPIE 5391:301.

Xue, X. and Y. Gao. 2005. “Application of Distributed Optic Fiber Strain Measurement in Geological Hazards Prevention.” The Chinese Journal of Geological Hazard and Control., China.

Zhang, D., B. Shi., and H. Xu. 2004. “The BOTDR-based Strain Monitoring for Tunnel.” Journal of Engineering Geology 12:422-426.

Zhang, J., Y. E. Chuan, X. Xue, and Y. Gao. 2005. “The Application of BOTDR on Geological Hazards Monitoring in Three Gorges.” Earth and Environment 33.B10:355-358.

Zhou, Z., J. He, G. Chen, and J. Ou. 2009. “A Smart Steel Strand for the Evaluation of Prestress Loss Distribution in Post-tensioned Concrete Structures.” Journal of Intelligent Material Systems and Structures 20.16:1901-1912.

Zhou, Z., J. He, G. Chen, and J. Ou. 2009. “A New Kind of Smart Cable with Functionality of Full Scale Monitoring Using BOTDR Technique.” Proc. of SPIE 7293:72930L.

Zhou, Z., J. He, K. Yan, and J. Ou. 2008. “Fiber-reinforced Polymer-packaged Optical Fiber Sensors Based on Brillouin Optical-domain Analysis.” Optical Engineering 47.1:014401.

Zou, L., X. Bao, Y. Wan, F. Ravet, and L. Chen. 2004. “Centimeter Spatial Resolution of Distributed Optical Fiber Sensor for Structural Healthy Monitoring.” Proc. of SPIE 5579:1-10.