Application of distributed fiber optic sensing technique in land subsidence monitoring

Jinghong Wu 1, Hongtao Jiang 2, Jingwen Su 3,4, Bin Shi 1, Yuehua Jiang 3,4, Kai Gu 1

1 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

2 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China

3 Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China

4 Nanjing Center, China Geological Survey, Nanjing 210016, China

Journal of Civil Structural Health Monitoring (2015) 5:587–597

DOI: 10.1007/s13349-015-0133-8

First online: 15 August 2015


Distributed fiber optic sensing (DFOS), a newly developed structure health monitoring technique, has been proved to be a very suitable and useful technique for the monitoring and the early warning of structural engineering. Its application in geotechnical engineering, especially land subsidence resulted by groundwater withdraw, was limited by the complex characteristics of geotechnical materials in the field. In this paper, Brillouin optical time domain reflectometer (BOTDR) and fiber Bragg grating (FBG) techniques were used to monitor the deformation of soil layers and pore water pressure for nearly 2 years in a 200-m borehole with four different types of optical fibers planted directly in the borehole. The result demonstrated that cables with better sheath protection and higher tension strength are more suitable for field monitoring. The main compaction occurs at two thick aquitards which are adjacent to the pumping confined aquifer. The deformation of soil layers shows the conformance with the change of groundwater level over time and the deformation of sand layer had instantaneity while that of clay layer had hysteresis. Rebound amount caused by the rise of ground water level was small, and the re-compression rate significantly decreases after rebounding. This paper demonstrates that the DFOS technique is a very advanced monitoring method for the investigation on the mechanism of land subsidence and the evaluation of soil compression deformation potential.


Land subsidence monitoring DFOS technology Groundwater withdraw Aquifer system


1. Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82:187–201. doi:10.1016/j.enggeo.2005.10.004

2. Pacheco-martı´nez J, Hernandez-marı´n M, Burbey TJ et al (2013) Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Me´xico. Eng Geol 164:172–186. doi:10.1016/j.enggeo.2013.06.015

3. Holzer TL, Johnson AL (1985) Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 11:245–255

4. Chen XX, Luo ZJ, Zhou SL (2014) Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures

caused by groundwater exploitation. J Hydrodyn 26:155–164. doi:10.1016/S1001-6058(14)60018-4

5. Hung WC, Hwang C, Liou JC et al (2012) Modeling aquifer system compaction and predicting land subsidence in central Taiwan. Eng Geol 147–148:78–90. doi:10.1016/j.enggeo.2012.07.018

6. Mousavi SM, Naggr MH, Shamsai S (2000) Application of GPS to evaluate land subsidence in Iran. In: Proceedings of the Sixth International Symposium on Land Subsidence, Ravenna, Italy, pp 107–112

7. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett. doi:10.1029/2004GL021737

8. Galloway DL, Hudnut KW, Ingebritsen SE et al (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34:2573–2585

9. Jiang LM, Lin H, Ma JW et al (2011) Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens Environ 115:257–268. doi:10.1016/j.rse.2010.08.008

10. Hung WC, Hwang C, Chang CP et al (2010) Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environ Earth Sci. doi:10.1007/s12665-009-0139-9

11. Riley FS (1969) Analysis of borehole extensometer data from central California. Land Subsid 2:423–431

12. Wang GY, Yu J, Wu SL, Wu JQ (2009) Land subsidence and compression of soil layers in Changzhou area. Geol Explor 45:612–620

13. Zhu HH, Shi B, Yan JF et al (2014) Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage. Smart Mater Struct 23:1–12. doi:10.1088/0964-1726/23/9/095027

14. Li HN, Li DS, Song GB (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng Struct 26:1647–1657. doi:10.1016/j.engstruct.2004.05.018

15. Wang BJ, Li K, Shi B, Wei GQ (2009) Test on application of distributed fiber optic sensing technique into soil slope monitoring. Landslides 6:61–68. doi:10.1007/s10346-008-0139-y

16. Gao JQ, Shi B, Zhang W et al (2005) Application of Distrbuted Fiber Optic Sensor to Bridge and Pavement Health Monitoring. J Disaster Prev Mitig Eng 23:14–19

17. Zhu HH, Shi B, Zhang J et al (2014) Distributed fiber optic monitoring and stability analysis of a model slope under surcharge loading. J Mt Sci 11:979–989. doi:10.1007/s11629-013-2816-0

18. Kunisue S, Kokubo T (2010) In situ formation compaction monitoring in deep reservoirs using optical fibres. IAHS-AISH, Wallingford, pp 368–370

19. Kersey AD, Davis MA, Patrick HJ et al (1997) Fiber grating sensors. J Light Technol 15:1442–1463. doi:10.1109/50.618377

20. Zhu HH, Yin JH, Zhang L et al (2010) Monitoring internal displacements of a model Dam using FBG sensing bars. Adv Struct Eng 13:249–262. doi:10.1260/1369-4332.13.2.249

21. Bao X, Dhliwayo J, Heron N et al (1995) Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. J Lightwave Technol 13:1340–1348

22. Horiguchi T, Kurashima T, Tateda M (1989) Tensile strain dependence of Brillouin frequency shift in silica optical fiber. IEEE Photonics Technol Lett 1:107–108

23. Horiguchi T, Kurashima T, Koyamada Y (1993) Measurement of temperature and strain distribution by Brillouin frequency shift in silica optical fibers. Fibers’ 92. Int Soc Opt Photonics 1797:2–13

24. Zhang D, Shi B, Cui HL, Xu HZ (2004) Improvement of spatial resolution of Brillouin optical time domain reflectometer using spectral decomposition. Opt Appl 34:291–302

25. Yang H, Zhang D, Shi B et al (2012) Experiments on coupling materials’ proportioning of borehole grouting in directly implanted optic fiber sensing. J Disaster Prev Mitig Eng 32:714–719

26. Jiang HT, Wang FB, Yang DY (2003) A study on Paleo-geography of late quaternary and engineering geological condition of Suzhou urban district. Sci Geogr Sin 23:82–86

27. Jiang HT, Shi B (1995) Study on the engineering geological properties of shallow layer in Suzhou city. Hydrogeol Eng Geol 22:35–37

28. Li CX, Fan DD, Zhang JQ (2000) Late quaternary stratigraphical framework and potential environmental problems in the Yangtze Delta area. Mar Geol Quat Geol 20:1–8

29. Land and Resources of Jiangsu Province (2007) Land subsidence monitoring report of Su-Xi-Chang area. Land and Resources of Jiangsu Province, Shanghai

30. Wu JH, Tang CS, Shi B et al (2014) Effect of ground covers on soil temperature in urban and rural areas. Environ Eng Geosci 20:225–237

31. Lu Y, Shi B, Xi J et al (2014) Field study of BOTDR-based distributed monitoring technology for ground fissures. J Eng Geol 22:8–13

32. Van Steenkiste JR, Kollar LP (1998) Effect of the coating on the stresses and strains in an embedded fiber optic sensor. J Compos Mater 32:1680–1711

33. Li QB, Li G, Wang GL (2003) Effect of the plastic coating on strain measurement of concrete by fiber optic sensor. Measurement 34:215–227