Recent Achievements in BOCDA/BOCDR

Kazuo Hotate

Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract—Recent achievements in Brillouin Optical Correlation Domain Analysis/Reflectometry (BOCDA/BOCDR) are discussed. Through manipulating interference characteristics of continuous lightwave by modulating the frequency, stimulated Brillouin scattering can be generated position-selectively along an optical fiber. The position can be shifted by changing the FM frequency. Then, distributed measurement of temperature or strain can be realized. This is “Brillouin Optical Correlation Domain Analysis (BOCDA).” Distributed measurement of spontaneous Brillouin scattering can also be realized with a similar way, which is “Brillouin Optical Correlation Domain Reflectometry (BOCDR).” Superior functions have already been demonstrated, such as mm order spatial resolution, kHz order sampling speed, random accessibility to arbitrary multiple points, and discriminative and distributed measurement of strain and temperature. Applications of the techniques have also been demonstrated, including structural health monitoring of aircrafts.

Keywords—Fiber optic sensing; Distributed sensing; Brillouin scattering

REFERENCES

[1] T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technology Letters, vol. 2, no. 5, pp. 352-354, May 1990.

[2] W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” OSA Optics Express, vol. 16, no. 26, pp. 21616-21625, Dec. 2008.

[3] K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightw. Technol., vol. 28, no. 14, pp. 2062-2067, July 2010.

[4] K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Optical Fiber Technology, vol. 19, no. 6, Part B, pp. 700-719, Dec. 2013. <Invited>

[5] K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - Proposal, experiment and simulation-,” IEICE Transactions on Electronics, vol. E83-C, no. 3, pp. 405-412, Mar. 2000.

[6] Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” OSA Optics Express, vol. 16, no. 16, pp. 12148-12153,Aug. 2008.

[7] K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” OSA Optics Letters, vol. 31, no. 17, pp. 2526-2528, Sep. 2006.

[8] K. Hotate, H. Arai, and K.-Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. of Control, Measurement and System Integration, vol. 1, no. 4, pp. 271-274, July 2008 <Invited>.

[9] K. Hotate, M. Numasawa, M. Kishi, and Z. He, “High speed random accessibility of Brillouin optical correlation domain analysis with time division pump-probe generation scheme,” APOS 2012, WB-3, Sydney, Feb. 2012.

[10] K.-Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” OSA Optics Letters, vol. 36 no. 11, pp. 2062-2064, June 2011.

[11] S. Manotham, M. Kishi, Z. He, and K. Hotate, “1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation,” APOS 2012, Th-C23, Sydney, Feb. 2012.

[12] O. Matsuoka, M. Kishi, and K. Hotate, “Brillouin optical correlation domain reflectometry with double frequency modulation and phase modulation,” 23rd International Conference on Optical Fiber Sensors (OFS-23), 9157-384, Santander, June 2014.

[13] K.-Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” OSA Optics Letters, vol. 33, no. 9, pp. 926-928, May 2008. 

[14] W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarizationmaintaining optical fiber,” IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 526-528, Apr. 2010.

[15] R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technology Letters, vol. 26, nr. 5, pp. 473-476, March 2014.

[16] T. Matsumoto, M. Kishi, and K. Hotate, “Discriminative and distributed measurement of temperature and strain with time-division pump-proberead light generation by single laser diode in simplified BOCDA system,” 23rd International Conference on Optical Fiber Sensors (OFS-23), 9157-499, Santander, June 2014.