Fiber optic monitoring of SCARC specimens with crack location prediction

Benjamin Smith a, Shenen Chen a, Bin Shi b, Guangqin Wei b, Zhengfu Bian c

a The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, USA, 28223;

b Nanzee Sensing, Nanjing University High-Tech Institute, Renai Road 150, Suzhou Industrial Park, 215123, China;

c China University of Mining and Technology, Jiefang South Road, Xuzhou, Jiangsu, 221008 China.

Proc. of SPIE Vol. 8694 86940O-1  2013

ABSTRACT

This paper is a summary of the preliminary experimental results regarding the use of optical fiber Bragg grating (OFBG) sensing equipment to monitor the local strain about the circumference of un-axially restricted, thick walled, unreinforced concrete vessels, developed under the moniker Simulated Carbon Ash Retention Cylinder (SCARC), subject to internal expansion pressure from ash carbon concrete (ACC). Internal pressure developed following the introduction of varying combinations of cement, fly-ash, aluminum powder, carbon-dioxide, and water to the voided region of the SCARC specimens. Seven specimens were created, and monitored, so that cracking patterns, material property variables, and OFBG strain irregularities could be investigated to begin formulating a crack location prediction and detection system.


Keywords: OFBG, sensor, SCARC, strain, concrete, carbon

REFERENCES

[1] Emiroglu, M., Beycioglu, A., Yildiz, S. “ANFIS and statistical based approach to prediction the peak pressure load of concrete pipes including glass fiber.” Expert Systems with Applications, 39-3:2877-2883 (2012)

[2] Haktanir, T., Ari, K., Altun, F., Karahan, O. “A comparative experimental investigation of concrete, reinforced concrete, and steel-fiber pipes under three-edge-bearing test.” Construction and Building Materials, 21: 1702-1708 (2007)

[3] Pour-Ghaz, M., Kim, J., Nadakuru, S. S., O’Connor, S. M., Michalowski, R. L., Bradshaw, A. S., Green, R. A., Lynch, J. P., Poursaee, A., Weiss, W. J. “Using electrical, magnetic, and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement.” Cement and Concrete Composites, 33-7: 749-762 (2011)

[4] Iyer, S., Sinha, S. K., Pedrick, M. K., Tittman, B. R. “Evaluation of ultrasonic inspection and imaging system for concrete pipes.” Automation in Construction, 22: 149-164 (2012)

[5] Yang, Y., Polak, M. A. “Nondestructive evaluation of the depth of surface-breaking cracks in concrete pipes.” Tunneling and Underground Space Technology, 25-6: 736-744 (2010).

[6] Li, C., Zhao, Y. G., Liu, H., Wan, Z., Zhang, C., Rong, N. “Monitoring second lining of tunnel with mounted fiber Bragg grating strain sensors.” Automation in Construction, 17: 641-644 (2008)

[7] Cheng, W. C., Ni, J. C. “Feasibility study of apply SOFO optical fiber sensor to segment of shield tunnel.” Tunnelling and Underground Space Technology, 24-3: 331-349 (2009)

[8] Wu, D., Bao, L., Li, R. “A holistic approach to wireless sensor network routing in underground tunnel environments.” Computer Communications, 33-13: 1566-1573 (2010)

[9] Yuan, Y., Shen, Z., Quan-fu, W., Pei, S. “Long distance wireless sensor networks applied in coal mine.” Procedia Earth and Planetary Science, 1-1: 1461-1467 (2009)

[10] Hongyao, W. “Coal Mine Disaster Rescue Life Sign Monitoring Technology Based on FBG and Acceleration Sensor.” Procedia Engineering, 26: 2294-2300 (2011)

[11] Chai, J., Liu, J. X., Qiu, B., Li, Y., Zhu, L., Wei, S. M., Wang, Z. P., Zhang, G. W., Yang, J. H. “Detecting Deformations in uncompacted strata by fiber Bragg grating sensors incorporated into GFRP. “Tunnelling and Underground Space Technology, 26-1: 92-99 (2011)

[12] Bhalla, S., Yang, Y. W., Zhao, J., Soh, C. K., “Structural health monitoring of underground facilities – Technology issues and challenges.” Tunnelling and Underground Space Technology, 20-5: 487-500 (2005)

[13] Yan, X., Li, H. “Self-sensing concrete-filled FRP tube using FBG strain sensor.” Fundamental Problems of Optoelectronics and Microelectronics III, Proc. Of SPIE Vol. 6595 659531. (2007)

[14] Hao, J. C., Leng, J.S. and Wei, Z. (2007) “Non-destructive Evaluation of Composite Pressure Vessel by Using FBG Sensors.” Chinese Journal of Aeronautica, 20: 120-123 (2007)

[15] Ren, L., Chen, J., Li, H. N., Song, G., Ji, X. “Design and application of a fiber Bragg grating strain sensor with enhanced sensitivity in the small-scale dam model.” Smart Materials and Structures, 18: 035015 (2009)

[16] Stutz, S., Cugnoni, J., Botsis, J. “ Crack – Fiber sensor interaction and characterization of the bridging tractions in mode I delamination.” Engineering Fracture Mechanics, 78: 890-900 (2011)

[17] Majumder, M. Gangopadhyay, T. K., Chakrabarty, A. K., Dasgupta, K., Bhattacharya, D. K. “Fibre Bragg gratings in structural health monitoring – present status and applications.” Sensors and Actuators A: Physical, 147: 150-164 (2008)

[18] Frieden, J., Cugnoni, J., Botsis, J., Gmur, T., Coric, D. “High speed internal strain measurements in composite structures under dynamic load using embedded FBG sensors.” Composite Structures, 92: 1905-1912 (2010)

[19] Phing, H. S., Ali, J., Rahman, R. A., Saktioto “Growth dynamics and characteristics of fabricated Fiber Bragg Grating using phase mask method.” Microelectronics Journal, 40: 608-610 (2009)

[20] Zhou, Z., OU, J. “Development of FBG sensors for structural health monitoring in civil infrastructures.” Proceedings of North American Euro-Pacific Workshop “Sensing Issues in Civil Structural Health Monitoring, Waikiki Beach, Hawaii (2004)

[21] Aagren, P., Harrison, N. L. “Strength of Concrete Beams and Pipes at First Crack—A strain limit design method.” ACI Journal Proceedings, 83:1, 156-161 (1986)

[22] Worden, K., Farrar, C. R., Manson, G., Park, G. “The fundamental axioms of structural health monitoring.” Proc. R. Soc. A, 463, no. 2082: 1639-1664 (2007)